【題目】如圖,在四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,且AB=4,BC=CD=ED=EA=2.
(1)求二面角E﹣AB﹣D的正切值;
(2)在線段CE上是否存在一點F,使得平面EDC⊥平面BDF?若存在,求 的值,若不存在請說明理由.

【答案】
(1)解:取AD的中點H,則EH⊥AD,

又平面EAD⊥平面ABCD,

∴EH⊥平面ABCD,

過H作HN⊥AB于N,由EN⊥AB,

∴∠ENH為二面角E﹣AB﹣D的平面角,

又∵BC⊥AB,AB∥CD,AB=2CD=4,

∴AD=2 ,AH= ,AE=2,∴EH= ,

又HN=1,∴tan ,

∴二面角E﹣AB﹣D的正切值為


(2)解:存在點F滿足條件.

取AB的中點M,由DM= AB,故DB⊥AD,

又平面EAD⊥平面ABCD,

∴BD⊥平面EAD,∴BD⊥ED,

要使平面EDC⊥平面BDF,

在等腰△DEC,DE=DC=2,EC= =2 ,

∴∠DEC=30°,∴EF=

=


【解析】(1)取AD的中點H,則EH⊥AD,EH⊥平面ABCD,過H作HN⊥AB于N,由EN⊥AB,得∠ENH為二面角E﹣AB﹣D的平面角,由此能求出二面角E﹣AB﹣D的正切值.(2)取AB的中點M,推導(dǎo)出DB⊥AD,BD⊥ED,由此能求出 的值.
【考點精析】通過靈活運用平面與平面垂直的性質(zhì),掌握兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a2x2+ax(a∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)最大值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用m,n表示兩條不同的直線,α,β表示兩個不同的平面,給出下列命題: ①若m⊥n,m⊥α,則n∥α;
②若m∥α,α⊥β則m⊥β;
③若m⊥β,α⊥β,則m∥α;
④若m⊥n,m⊥α,n⊥β,則α⊥β,
其中,正確命題是(
A.①②
B.②③
C.③④
D.④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐 中,底面 是邊長為 2 的正三角形,頂點 在底面上的射影為的中心,若的中點,且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率為﹣3,求a,b的值;
(2)若曲線y=f(x)存在兩條垂直于y軸的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校對高三學(xué)生一次模擬考試的數(shù)學(xué)成績進行分析,隨機抽取了部分學(xué)生的成績,得到如圖所示的成績頻率分布直方圖.

(1)根據(jù)頻率分布直方圖估計這次考試全校學(xué)生數(shù)學(xué)成績的眾數(shù)、中位數(shù)和平均值;
(2)若成績不低于80分為優(yōu)秀成績,視頻率為概率,從全校學(xué)生中有放回的任選3名學(xué)生,用變量ξ表示3名學(xué)生中獲得優(yōu)秀成績的人數(shù),求變量ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

關(guān)于的函數(shù)關(guān)系式;

已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為16/米,設(shè)花壇的面積與裝飾總費用之比為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在封閉的直三棱柱ABC﹣A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是(
A.4π
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程(x﹣1)2+y2=1,P是橢圓 =1上一點,過P作圓的兩條切線,切點為A,B,則 的取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案