(本小題滿分14分)
已知
(Ⅰ)求;
(Ⅱ)判斷并證明的奇偶性與單調性;
(Ⅲ)若對任意的,不等式恒成立,求的取值范圍。
(1)則;(2)函數(shù)為奇函數(shù)。證明見解析。
(3)

試題分析:(1)利用換元法:令t=logax⇒x=at,代入可得f(t)從而可得函數(shù)f(x)的解析式
(2)由(1)得f(x)定義域為R,可求函數(shù)的定義域,先證奇偶性:代入f(-x)=-f(x),從而可得函數(shù)為奇函數(shù)。再證單調性:利用定義任取x1<x2,利用作差比較f(x1)-f(x2)的正負,從而確當f(x1)與f(x2)的大小,進而判斷函數(shù)的單調性
(3)根據上面的單調性的證明以及定義域得到不等式的求解。
解:(1)令
 ………3分
(2)
∴函數(shù)為奇函數(shù)。                        ………5分
,任取

==
=
,

類似可證明當,綜上,無論上都是增函數(shù)。                                                               ………9分
(3)不等式化為
上都是增函數(shù),∴恒成立
恒成立,∴
的取值范圍.                              ………14分
點評:解題的關鍵是利用奇偶性的定義③利用定義判斷函數(shù)單調性的步驟(i)任設x1<x2(也可x1>x2)(ii)作差f(x1)-f(x2)(iii)定號,給出結論.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),且
(1)求函數(shù)的解析式;
(2)用單調性的定義證明上是增函數(shù);
(3)解不等式。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設A={x|},B={y|1},下列圖形表示集合A到集合B的函數(shù)圖形的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
對于定義域為D的函數(shù),若同時滿足下列條件:①在D內單調遞增或單調遞減;②存在區(qū)間[],使在[]上的值域為[];那么把()叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若函數(shù)是閉函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù) ,
(I)求函數(shù)的定義域;
(II)若函數(shù),求的值;
(III)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一批設備價值a萬元,由于使用磨損,每年比上一年價值降低b% ,n年以后這批設備的價值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)若是定義在上的增函數(shù),且對一切,滿足.
(1)求的值;
(2)若,解不等式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)某公司是專門生產健身產品的企業(yè),第一批產品上市銷售40天內全部售完,該公司對第一批產品上市后的市場銷售進行調研,結果如圖(1)、(2)所示.其中(1)的拋物線表示的是市場的日銷售量與上市時間的關系;(2)的折線表示的是每件產品的銷售利潤與上市時間的關系.

(1)寫出市場的日銷售量與第一批產品A上市時間t的關系式;
(2)第一批產品A上市后的第幾天,這家公司日銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)當a=-1時,求函數(shù)f(x)的最大值和最小值;
(2)求實數(shù)a的取值范圍,使y=f(x)在[-5,5]上是單調增函數(shù).

查看答案和解析>>

同步練習冊答案