某班同學在“十八大”期間進行社會實踐活動,對[25,55]歲的人群隨機抽取人進行了一次當前投資生活方式----“房地產(chǎn)投資”的調(diào)查,得到如下統(tǒng)計和各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)求n,a,p的值;
(Ⅱ)從年齡在[40,50)歲的“房地產(chǎn)投資”人群中采取分層抽樣法抽取9人參加投資管理學習活動,其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在[40,45)歲的人數(shù)為,求的分布列和期望.

(Ⅰ);(Ⅱ).

試題分析:由頻率分布直方圖及統(tǒng)計圖表計算相關(guān)值,根據(jù)條件得到隨機變量的所有可能取值及其相應的概率值,得到隨機變量的分布列,根據(jù)分布列計算期望值.
試題解析:(Ⅰ)年齡在[25,30)的總?cè)藬?shù)為,                1分
根據(jù)頻率分布直方圖,總?cè)藬?shù)為人              2分
年齡在[40,45)的人數(shù)為
所以
所以                                4分
因為年齡在[30,35)的人數(shù)的頻率為.
所以年齡在[30,35)的人數(shù)為
所以,                             6分
(Ⅱ)依題抽取年齡在[40,45) 之間6人,
抽取年齡在[45,50)之間3人,             7分
                                                 8分
,,
,             11分
所以             12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

從某校高三上學期期末數(shù)學考試成績中,隨機抽取了60名學生的成績得到頻率分布直方圖如下:

(Ⅰ)根據(jù)頻率分布直方圖,估計該校高三學生本次數(shù)學考試的平均分;
(Ⅱ)以上述樣本的頻率作為概率,從該校高三學生中有放回地抽取3人,記抽取的學生成績不低于90分的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標準》.其中規(guī)定:居民區(qū)中的PM2.5(PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.某城市環(huán)保部門隨機抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別
PM2.5(微克/立方米)
頻數(shù)(天)
頻率
第一組
(0,15]
4
0.1
第二組
(15,30]
12
0.3
第三組
(30,45]
8
0.2
第四組
(45,60]
8
0.2
第五組
(60,75]
4
0.1
第六組
(75,90)
4
0.1
(1)寫出該樣本的眾數(shù)和中位數(shù)(不必寫出計算過程);
(2)求該樣本的平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由;
(3)將頻率視為概率,對于去年的某2天,記這2天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標準的天數(shù)為X,求X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是1,2,,3,5這五個數(shù)據(jù)的中位數(shù),且1,4,,這四個數(shù)據(jù)的平均數(shù)是1,則的最小值是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)產(chǎn)品過程中記錄的產(chǎn)品(噸)與相應的生產(chǎn)能耗(噸)的幾組對應數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出關(guān)于的線性回歸方程為,那么的值為(   )

3
4
5
6

2.5
3
4
4.5
A.4.5      B.3.5       C.3.15          D. 0.35

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若根據(jù)兒童的年齡x(歲)和體重y(kg),得到利用年齡預報體重的線性回歸方程是.現(xiàn)已知5名兒童的年齡分別是3,4,5,6,7,則這5名兒童的平均體重大約是       (kg)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某市芙蓉社區(qū)為了解家庭月均用水量(單位:噸),從社區(qū)中隨機抽查100戶,獲得每戶2013年3月的用水量,并制作了頻率分布表和頻率分布直方圖(如圖).

(Ⅰ)分別求出頻率分布表中a、b的值,并估計社區(qū)內(nèi)家庭月用水量不超過3噸的頻率;
(Ⅱ)設(shè)是月用水量為[0,2)的家庭代表.是月用水量為[2,4]的家庭代表.若從這五位代表中任選兩人參加水價聽證會,請列舉出所有不同的選法,并求家庭代表至少有一人被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

有甲、乙兩位射擊運動員在一次射擊測試中各射靶10次,他們每次命中環(huán)數(shù)的條形圖如圖所示,共計兩位運動員的平均環(huán)數(shù)分別為,標準差為,則( ).
 
A.,B.,
C.,D.,

查看答案和解析>>

同步練習冊答案