【題目】某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設H:“這種血清不能起到預防感冒的作用”,利用2×2列聯表計算的K2≈3.918,經查臨界值表知P(K2≥3.841)≈0.05.則下列表述中正確的是( )
A.有95℅的把握認為“這種血清能起到預防感冒的作用”
B.若有人未使用該血清,那么他一年中有95℅的可能性得感冒
C.這種血清預防感冒的有效率為95℅
D.這種血清預防感冒的有效率為5℅
科目:高中數學 來源: 題型:
【題目】若函數f(x)的定義域為[0,4],則函數g(x)=f(x)+f(x2)的定義域為( )
A.[0,2]
B.[0,16]
C.[﹣2,2]
D.[﹣2,0]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,其中a>0,且函數f(x)的最大值是
(1)求實數a的值;
(2)若函數g(x)=lnf(x)﹣b有兩個零點,求實數b的取值范圍;
(3)若對任意的x∈(0,2),都有f(x)< 成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)= (a∈R)是奇函數,函數g(x)= 的定義域為(﹣1,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣1,+∞)上遞減,根據單調性的定義求實數m的取值范圍;
(3)在(2)的條件下,若函數h(x)=f(x)+g(x)在區(qū)間(﹣1,1)上有且僅有兩個不同的零點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一列火車從重慶駛往北京,沿途有n個車站(包括起點站重慶和終點站北京).車上有一郵政車廂,每停靠一站便要卸下火車已經過的各站發(fā)往該站的郵袋各1個,同時又要裝上該站發(fā)往以后各站的郵袋各1個,設從第k站出發(fā)時,郵政車廂內共有郵袋ak個(k=1,2,…,n).
(1)求數列{ak}的通項公式;
(2)當k為何值時,ak的值最大,求出ak的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(2+x),g(x)=ln(2﹣x)
(1)判斷函數h(x)=f(x)﹣g(x)的奇偶性;
(2)求使f(x)≥g(x)成立的x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com