分析 (1)首先求出函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)與單調(diào)區(qū)間的關(guān)系確定函數(shù)的單調(diào)區(qū)間;
(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的極值即可;
(3)由(1)(2)的分析可知y=f(x)圖象的大致形狀及走向,可知函數(shù)圖象的變化情況,可知方程f(x)=a有3個不同實根,求得實數(shù)a的值.
解答 解:(1)f′(x)=3x2-6=3(x2-2),
令f′(x)<0,解得:-$\sqrt{2}$<x<$\sqrt{2}$,
令f′(x)>0,解得:x>$\sqrt{2}$或x<-$\sqrt{2}$,
∴函數(shù)f(x)的遞減區(qū)間是(-$\sqrt{2}$,$\sqrt{2}$),遞增區(qū)間是(-∞,-$\sqrt{2}$)與($\sqrt{2}$,+∞);
(2)由(1)得當(dāng)x=-$\sqrt{2}$時,有極大值5+4$\sqrt{2}$,當(dāng)x=$\sqrt{2}$時,有極小值5-4$\sqrt{2}$;
(3)由(1)(2)的分析可知y=f(x)圖象的大致形狀及走向,
∴當(dāng)5-4$\sqrt{2}$<a<5+4$\sqrt{2}$時,
直線y=a與y=f(x)的圖象有3個不同交點,
即方程f(x)=a有三解,
∴5-4$\sqrt{2}$<a<5+4$\sqrt{2}$.
點評 考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和圖象,體現(xiàn)了數(shù)形結(jié)合的思想方法.本題是一道含參數(shù)的函數(shù)、導(dǎo)數(shù)與方程的綜合題,需要對參數(shù)進行分類討論.屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,+∞) | B. | [-4,+∞) | C. | (-5,+∞) | D. | [-5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | ln 2+1 | C. | ln 2-1 | D. | ln 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{6}{5}$ | C. | $\frac{8}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com