某企業(yè)2010年的利潤是1200萬元,計劃從2011年起每年比上一年利潤增加200萬元,若經(jīng)過x年累計利潤為y萬元,試寫出y是x的函數(shù)關(guān)系式.
考點(diǎn):根據(jù)實(shí)際問題選擇函數(shù)類型
專題:計算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,該企業(yè)的每年利潤成等差數(shù)列,首項為1200,公差為200;從而寫出y=1200+(1200+200)+(1200+400)+…+(1200+200x).
解答: 解:由題意,該企業(yè)的每年利潤成等差數(shù)列,首項為1200,公差為200;
故y=1200+(1200+200)+(1200+400)+…+(1200+200x)
=
1200+1200+200x
2
(x+1)
=(1200+100x)(x+1),(x∈N).
點(diǎn)評:本題考查了實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,同時考查了數(shù)列的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過原點(diǎn)O的直線與函數(shù)y=(
1
2
x的圖象交于A,B兩點(diǎn),過B作y軸的垂線交函數(shù)y=(
1
4
x的圖象于C,若AC∥y軸,則點(diǎn)A的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=0是函數(shù)f(x)=(x2+ax+b)ex(x∈R)的一個極值點(diǎn),且函數(shù)f(x)的圖象在x=2處的切線的斜率為2e2
(Ⅰ)求函數(shù)f(x)的解析式并求單調(diào)區(qū)間.
(Ⅱ)設(shè)g(x)=
f′(x)
ex
,其中x∈(-2,m),問:對于任意的m>-2,方程g(x)=
2
3
(m-1)2
在區(qū)間(-2,m)上是否存在實(shí)數(shù)根?若存在,請確定實(shí)數(shù)根的個數(shù).若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a<b,且a+b=1,下列不等式中,一定成立的是( 。
①log2a>-1;②log2a+log2b>-2;③log2(b-a)<0;④log2
b
a
+
a
b
)>1.
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,
AE
=2
EB 
BD
=2
DC
,設(shè)
AB
=
a
,
AC
=
b
,則
DE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+(2a+1)x+1-3a,其中(a≠0)
(1)若函數(shù)在(-∞,2]上單調(diào)遞增,求a的范圍;
(2)若f(lgx)=0的兩根之積為10,求a的值;
(3)若g(x)=
f(x)
a
,是否存在實(shí)數(shù)a,使得g(g(x))=0只有一個實(shí)數(shù)根?若存在,求出a的值或者范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
100
+
y2
36
=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,那么點(diǎn)P到另一個焦點(diǎn)F2的距離等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線2ax-by+2=0(a>0,b>0)平分圓C:x2+y2+2x-4y+1=0的圓周長,則
1
a
+
2
b
的最小值為(  )
A、4
2
B、3+2
2
C、4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x-
π
3
)的對稱中心為
 

查看答案和解析>>

同步練習(xí)冊答案