已知,
(1)當(dāng)時(shí),解不等式;
(2)若,解關(guān)于的不等式。
(1)(2)

試題分析:(I)當(dāng)時(shí),有不等式,
,∴不等式的解為:
(II)∵不等式
當(dāng)時(shí),有,∴不等式的解集為
點(diǎn)評(píng):解一元二次不等式時(shí)要結(jié)合與之對(duì)應(yīng)的二次方程找到解的邊界值,結(jié)合與之對(duì)應(yīng)的二次函數(shù)確定范圍,當(dāng)有參數(shù)時(shí)要注意不同的參數(shù)范圍解集是不同的
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式f(x)< .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)f(x)的定義域?yàn)?i>D,若存在非零實(shí)數(shù)l使得對(duì)于任意xM(MD),有xlD,且f(xl)≥f(x),則稱函數(shù)f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=x是R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin 2x為R上的π高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞).
其中正確的命題是________.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)化簡(jiǎn);
(2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知m∈R,對(duì)p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個(gè)不同的零點(diǎn).求使“p且q”為假命題、“p或q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處取得極小值.
(1)求的值;
(2)若處的切線方程為,求證:當(dāng)時(shí),曲線不可能在直線的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,公園有一塊邊長(zhǎng)為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,上,上.

(1)設(shè),求用表示的函數(shù)關(guān)系式;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應(yīng)在哪里?如果是參觀線路,則希望它最長(zhǎng),的位置又應(yīng)在哪里?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)是定義在上的奇函數(shù),若對(duì)于任意給定的不等實(shí)數(shù)、,不等式恒成立,則不等式的解集為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)是增函數(shù),在(0,1)為減函數(shù).
(I)求、的表達(dá)式;
(II)求證:當(dāng)時(shí),方程有唯一解;
(Ⅲ)當(dāng)時(shí),若內(nèi)恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案