8.在圓x2+y2=3上任取一動(dòng)點(diǎn)P,過(guò)P作x軸的垂線(xiàn)PD,D為垂足,$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$動(dòng)點(diǎn)M的軌跡為曲線(xiàn)C.
(1)求C的方程及其離心率;
(2)若直線(xiàn)l交曲線(xiàn)C交于A,B兩點(diǎn),且坐標(biāo)原點(diǎn)到直線(xiàn)l的距離為$\frac{\sqrt{3}}{2}$,求△AOB面積的最大值.

分析 (1)由$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$得x0=x,y0=$\sqrt{3}$y,即可得到橢圓的方程及其離心率;
(2)由于已知坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為$\frac{\sqrt{3}}{2}$,故求△AOB面積的最大值的問(wèn)題轉(zhuǎn)化為求線(xiàn)段AB的最大值的問(wèn)題,由弦長(zhǎng)公式將其表示出來(lái),再判斷最值即可得到線(xiàn)段AB的最大值.

解答 解:(Ⅰ)設(shè)M(x,y),P(x0,y0),由$\overrightarrow{PD}$=$\sqrt{3}$$\overrightarrow{MD}$得x0=x,y0=$\sqrt{3}$y …..(2分)
因?yàn)閤02+y02=3,所以x2+3y2=3,即$\frac{{x}^{2}}{3}+{y}^{2}$=1,
其離心率e=$\frac{\sqrt{6}}{3}$.…..(4分)
(Ⅱ)當(dāng)AB與x軸垂直時(shí),|AB|=$\sqrt{3}$.(5分)
②當(dāng)AB與x軸不垂直時(shí),
設(shè)直線(xiàn)AB的方程為y=kx+m,A(x1,y1),B(x2,y2),
由已知$\frac{|m|}{\sqrt{1+{k}^{2}}}=\frac{\sqrt{3}}{2}$,得${m}^{2}=\frac{3}{4}({k}^{2}+1)$.(6分)
把y=kx+m代入橢圓方程,整理得(3k2+1)x2+6kmx+3m2-3=0,
∴x1+x2=$\frac{-6km}{3{k}^{2}+1}$,x1x2=$\frac{3({m}^{2}-1)}{3{k}^{2}+1}$(7分)
∴k≠0,|AB|2=(1+k2)(x2-x12=3+$\frac{12}{9{k}^{2}+\frac{1}{{k}^{2}}+6}$≤4,
當(dāng)且僅當(dāng)9k2=$\frac{1}{{k}^{2}}$,即k=$±\frac{\sqrt{3}}{3}$時(shí)等號(hào)成立,此時(shí)|AB|=2.(10分)
當(dāng)k=0時(shí),|AB|=$\sqrt{3}$.(11分)
綜上所述:|AB|max=2,
此時(shí)△AOB面積取最大值$S=\frac{1}{2}|AB{|}_{max}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$(12分)

點(diǎn)評(píng) 本題考查直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題,解答本題關(guān)鍵是對(duì)直線(xiàn)AB的位置關(guān)系進(jìn)行討論,可能的最值來(lái),本題由于要聯(lián)立方程求弦長(zhǎng),故運(yùn)算量比較大,又都是符號(hào)運(yùn)算,極易出錯(cuò),做題時(shí)要嚴(yán)謹(jǐn)認(rèn)真.利用弦長(zhǎng)公式求弦長(zhǎng),規(guī)律固定,因此此類(lèi)題難度降低不少,因?yàn)橛写斯潭ㄒ?guī)律,方法易找,只是運(yùn)算量較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某空間幾何體的三視圖如圖所示,則該幾何體的表面積是$32+8\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.i是虛數(shù)單位,復(fù)數(shù)z=a+i(a∈R)滿(mǎn)足z2+z=1-3i,則|z|=( 。
A.$\sqrt{2}$或$\sqrt{5}$B.2或5C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1009=1,則S2017( 。
A.1008B.1009C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知F為雙曲線(xiàn)C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的左焦點(diǎn),A(1,4),P是C右支上一點(diǎn),當(dāng)△APF周長(zhǎng)最小時(shí),點(diǎn)F到直線(xiàn)AP的距離為$\frac{32}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=x5+ax3+bx-8,且f(-2017)=10,則f(2017)等于( 。
A.-26B.-18C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示,在Rt△ABC中,已知A(-2,0),直角頂點(diǎn)$B(0,-2\sqrt{2})$,點(diǎn)C在x軸上.
(1)求Rt△ABC外接圓的方程;
(2)求過(guò)點(diǎn)(0,3)且與Rt△ABC外接圓相切的直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=xlnx,(x>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)F(x)=ax2+f'(x),(a∈R),F(xiàn)(x)是否存在極值,若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知全集U=R,集合A={x|x<a或x>2-a,(a<1)},集合B={x|$tan(πx-\frac{π}{3})=-\sqrt{3}\}$.
(Ⅰ)求集合∁UA與B;
(Ⅱ)當(dāng)-1<a≤0時(shí),集合C=(∁UA)∩B恰好有3個(gè)元素,求集合C.

查看答案和解析>>

同步練習(xí)冊(cè)答案