求下列函數(shù)的定義域:
(1)y=
2x+1
+
3-4x

(2)f(x)=
x+4
x+2

(3)若f(x)的定義域是[1,4],求f(x+2)的定義域?
(4)已知f(2x+1)的定義域?yàn)椋?,1),求f(x)的定義域?
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,建立不等式關(guān)系即可得到結(jié)論.
解答: 解:(1)要使函數(shù)有意義,則
2x+1≥0
3-4x≥0

x≥-
1
2
x≤
3
4
,即-
1
2
≤x≤
3
4
,即函數(shù)的定義域?yàn)閧x|-
1
2
≤x≤
3
4
}.
(2)要使函數(shù)有意義,則
x+4≥0
x+2≠0
,
x≥-4
x≠-2
,即x≥-4,且x≠-2,即函數(shù)的定義域?yàn)閧x|x≥-4,且x≠-2}.
(3)若f(x)的定義域?yàn)閇1,4],
則由1≤x+2≤4,解得-1≤x≤2,
即函數(shù)f(x-1)的定義域?yàn)閇-1,2].
(4)若f(2x+1)的定義域?yàn)椋?,1),則0<x<1,
則1<2x+1<3,
即f(x)的定義域?yàn)椋?,3).
點(diǎn)評(píng):本題主要考查函數(shù)定義域的求解,要求熟練掌握復(fù)合函數(shù)定義域之間的關(guān)系以及函數(shù)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2x2的圖象的大致形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某運(yùn)輸公司運(yùn)輸貨物的價(jià)格規(guī)定是:如果運(yùn)輸里程不超過(guò)100km,運(yùn)費(fèi)是0.5元/km;如果超過(guò)100km,超過(guò)100km的部分按0.4元/km收費(fèi).
(1)請(qǐng)寫(xiě)出運(yùn)費(fèi)y與里程數(shù)x之間的函數(shù)關(guān)系式;
(2)當(dāng)里程數(shù)是120km時(shí),運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐P-ABCD底面是平行四邊形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F(xiàn)分別為AD,PC的中點(diǎn).
(1)求證:EF∥平面PAB;
(2)求二面角D-PA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|2x-1|.
(I)不等式f(x)≤a的解集為{x|0≤x≤1},求a值;
(Ⅱ)若g(x)=
1
f(x)+f(x-1)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,點(diǎn)(a,b)在4xcosB-ycosC=cosB上.
(1)cosB的值;
(2)若
BA
BC
=3,b=3
2
,求a和c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2+a6=10,a5=6,數(shù)列bn=an1-an
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)證明:b1+3b2+5b3+…+(2n-1)bn<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F(0,1),點(diǎn)M是F關(guān)于原點(diǎn)的對(duì)稱點(diǎn).
(1)若橢圓C1的兩個(gè)焦點(diǎn)分別為F,M,且離心率為
1
2
,求橢圓C1的方程;
(2)若動(dòng)點(diǎn)P到定點(diǎn)F的距離等于點(diǎn)P到定直線l:y=-1的距離,求動(dòng)點(diǎn)P的軌跡C2的方程;
(3)過(guò)點(diǎn)M作(2)中的軌跡C2的切線,若切點(diǎn)在第一象限,求切線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為遞增的等比數(shù)列,且{a1,a3,a5}⊆{0,1,3,4,16}.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在等差數(shù)列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2對(duì)一切n∈N*都成立?若存在,求出bn;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案