精英家教網 > 高中數學 > 題目詳情

【題目】已知為定義在上的偶函數,,且當時,單調遞增,則不等式的解集為__________.

【答案】

【解析】

根據題意,分析可得fx+1)﹣fx+2)>2x+3fx+1+x+12fx+2+x+22gx+1)>gx+2),由函數奇偶性的定義分析可得gx)為偶函數,結合函數的單調性分析可得gx+1)>gx+2|x+1||x+2|,解可得x的取值范圍,即可得答案.

根據題意,gx)=fx+x2

fx+1)﹣fx+2)>2x+3fx+1+x+12fx+2+x+22gx+1)>gx+2),

fx)為偶函數,則g(﹣x)=f(﹣x+(﹣x2fx+x2gx),即可得函數gx)為偶函數,

又由當x∈(﹣,0]時,gx)單調遞增,則gx)在[0,+∞)上遞減,

gx+1)>gx+2|x+1||x+2|x+12<(x+22,解可得x,

即不等式的解集為(,+∞);

故答案為:(,+∞).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知實數,,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果有一天我們分居異面直線的兩頭,那我一定穿越時空的阻隔,畫條公垂線向你沖來,一刻也不愿逗留.如圖1所示,在梯形中,//,且,,分別延長兩腰交于點,點為線段上的一點,將沿折起到的位置,使,如圖2所示.

(1)求證:

(2)若,,四棱錐的體積為,求四棱錐的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,拋擲一藍、一黃兩枚質地均勻的正四面體骰子,分別觀察底面上的數字.

1)用表格表示試驗的所有可能結果;

2)列舉下列事件包含的樣本點:A=“兩個數字相同,B=“兩個數字之和等于5”C=“藍色骰子的數字為2”.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,等邊△ABC中,AC=4,D是邊AC上的點(不與A,C重合),過點D作DE∥BC交AB于點E,沿DE將△ADE向上折起,使得平面ADE⊥平面BCDE,如圖2所示.

(1)若異面直線BE與AC垂直,確定圖1中點D的位置;

(2)證明:無論點D的位置如何,二面角D﹣AE﹣B的余弦值都為定值,并求出這個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

是函數的極值點,求曲線在點處的切線方程;

若函數在區(qū)間上為單調遞減函數,求實數a的取值范圍;

m,n為正實數,且,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】判斷下列說法是否正確,若錯誤,請舉出反例

1)互斥的事件一定是對立事件,對立事件不一定是互斥事件;

2)互斥的事件不一定是對立事件,對立事件一定是互斥事件;

3)事件與事件B中至少有一個發(fā)生的概率一定比B中恰有一個發(fā)生的概率大;

4)事件與事件B同時發(fā)生的概率一定比B中恰有一個發(fā)生的概率小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數).

(Ⅰ)當時,求不等式的解集;

(Ⅱ)求證:,并求等號成立的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數fx)的解析式;

2)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實數m的取值范圍.

查看答案和解析>>

同步練習冊答案