已知:a是實(shí)數(shù),命題P:?x∈R,使x2+2ax-4a<0;命題Q:-4<a<0;則命題P為假命題是命題Q成立的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.
解答: 解:由于命題P:?x∈R,使
x
2
 
+2ax-4a<0
;是假命題,
?P:?x∈R,x2+2ax-4a≥0就是真命題,故△=4a2+16a≤0⇒-4≤a≤0,
則命題P為假命題是命題Q成立必要不充分條件,
故選B
點(diǎn)評(píng):此題考查特稱命題的判斷以及充要條件的概念.根據(jù)充分條件和必要條件的定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

討論函數(shù)f(x)=
x-1,x<0
0,x=0
x+1,x>0
在x=0處的極限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)+1(A>0,ω>0,0<φ<
π
2
)的周期為π,f(
π
4
)=
3
+1,且f(x)得最大值為3.
(1)寫出f(x)的表達(dá)式;
(2)寫出函數(shù)f(x)的對(duì)稱中心,對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①已知直線a、b和平面α,若a∥b,且a∥α,則b∥α;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R
)與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈R,向量
a
=(sin2x , cosx)
b
=(1 , 2cosx)
,f(x)=
a
b

(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f(
α
2
)=
4
2
5
cos(α+
π
4
)cos2α+1
,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=cos2(x+
π
12
),g(x)=1+
1
2
sin2x.設(shè)x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,
    求g(x0)的值.
(2)已知函數(shù)f(x)=x2-ax+4x+4-a在x∈[0,3]時(shí),f(x)>0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)數(shù)范圍內(nèi)解方程x2+2x+5=0,解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)等比數(shù)列{an}共有2n+1項(xiàng),奇數(shù)項(xiàng)之積為100,偶數(shù)項(xiàng)之積為120,則an+1為(  )
A、
6
5
B、
5
6
C、20
D、110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,m和n都是實(shí)數(shù),且m(1+i)=7+ni,則
m+ni
m-ni
( 。
A、-1B、1C、-iD、i

查看答案和解析>>

同步練習(xí)冊(cè)答案