一個(gè)等比數(shù)列{an}共有2n+1項(xiàng),奇數(shù)項(xiàng)之積為100,偶數(shù)項(xiàng)之積為120,則an+1為( 。
A、
6
5
B、
5
6
C、20
D、110
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)等比數(shù)列的通項(xiàng)公式和性質(zhì),利用整體法即可得到結(jié)論.
解答: 解:∵等比數(shù)列{an}共有2n+1項(xiàng),且奇數(shù)項(xiàng)之積為100,偶數(shù)項(xiàng)之積為120,
∴T=a1a3???a2n+1=100,T=a2a4???a2n=120,
T
T
=
a1a3a2n+1
a2a4a2n
=a1
a3
a2
a2n+1
a2n
=a1qn=an+1
即an+1=
100
120
=
5
6

故選B.
點(diǎn)評:本題主要考查等比數(shù)列的性質(zhì)和通項(xiàng)公式的應(yīng)用,要求熟練掌握等比數(shù)列的性質(zhì)的應(yīng)用,考查學(xué)生計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,則
12
x
+x的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:a是實(shí)數(shù),命題P:?x∈R,使x2+2ax-4a<0;命題Q:-4<a<0;則命題P為假命題是命題Q成立的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解學(xué)生喜歡數(shù)學(xué)是否與性別有關(guān),對50個(gè)學(xué)生進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜歡數(shù)學(xué)不喜歡數(shù)學(xué)合計(jì)
男生5
女生10
合計(jì)50
已知在全部50人中隨機(jī)抽取1人抽到喜歡數(shù)學(xué)的學(xué)生的概率為
3
5

(1)請將上面的列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(2)是否有99.5%的把握認(rèn)為喜歡數(shù)學(xué)與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜歡數(shù)學(xué)的女生人數(shù)為X,求X的分布列與期望.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是實(shí)數(shù),則“|b|>|a|>0”是“
b
a
>1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

造船廠年造船量最多20艘,造船x艘產(chǎn)值函數(shù)為R(x)=3700x+45x2-10x3(單位:萬元),成本函數(shù)c(x)=460x+5000(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x)
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x)(利潤=產(chǎn)值-成本);
(2)問年造船量安排多少艘時(shí),公司造船利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)已知z=a+bi(a、b∈R,i是虛數(shù)單位),z1,z2∈C,定義:D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.給出下列命題:
(1)對任意z∈C,都有D(z)>0;
(2)若
.
z
是復(fù)數(shù)z的共軛復(fù)數(shù),則D(
.
z
)=D(z)
恒成立;
(3)若D(z1)=D(z2)(z1、z2∈C),則z1=z2
(4)對任意z1、z2∈C,結(jié)論D(z1,z2)=D(z2,z1)恒成立,
則其中真命題是( 。
A、(1)(2)(3)(4)
B、(2)(3)(4)
C、(2)(4)
D、(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1≤x≤3},B={x|3x>9}
(Ⅰ)分別求A∩B,(∁RB)∪A;
(Ⅱ)已知集合C={x|a-4<x<a+1},若A⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不用求根公式,求函數(shù)f(x)=(x-2)(x-5)-1的零點(diǎn)的個(gè)數(shù),并比較零點(diǎn)與3的大。

查看答案和解析>>

同步練習(xí)冊答案