5.若點P(2,0)到雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一條漸近線的距離為1,則a=$\sqrt{3}$.

分析 求出雙曲線的漸近線方程,利用點到直線的距離公式列出方程求解即可.

解答 解:雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一條漸近線方程為:x+ay=0,
點P(2,0)到雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一條漸近線的距離為1,
可得:$\frac{|2+0|}{\sqrt{1+{a}^{2}}}$=1,解得a=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查雙曲線的簡單性質(zhì)的應用,漸近線的求法,點到直線的距離公式的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤2}\\{y≤2}\end{array}\right.$,則z=$\frac{1}{2}$x+y的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.誠信是立身之本,道德之基,某校學生會創(chuàng)設了“誠信水站”,既便于學生用水,又推進誠信教育,并用“$\frac{周實際回收水費}{周投入成本}$”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:
 第一周  第二周第三周  第四周
 第一個周期 95% 98% 92% 88%
 第二個周期 94% 94% 83% 80%
 第三個周期 85%92%  95%96% 
(1)計算表中十二周“水站誠信度”的平均數(shù)$\overline{x}$;
(2)分別從表中每個周期的4個數(shù)據(jù)中隨機抽取1個數(shù)據(jù),設隨機變量X表示取出的3個數(shù)據(jù)中“水站誠信度”超過91%的數(shù)據(jù)的個數(shù),求隨機變量X的分布列和期望;
(3)已知學生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.集合A={x|y=ln(1-2x)},B={x|x2<x},全集U=A∪B,則∁U(A∩B)=( 。
A.(-∞,0)B.$[\frac{1}{2},1]$C.(-∞,0)∪$[\frac{1}{2},1]$D.$(-\frac{1}{2},0]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.過點C(2,-1)且與直線x+y-3=0垂直的直線是( 。
A.x+y-1=0B.x+y+1=0C.x-y-3=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$與拋物線y2=2px(p>0)有公共焦點F且交于A,B兩點,若直線AB過焦點F,則該雙曲線的離心率是( 。
A.$\sqrt{2}$B.1+$\sqrt{2}$C.2$\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某四棱錐的三視圖如圖所示,則該四棱錐的體積是( 。
A.36B.24C.12D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知命題p:直線$x+2y-\sqrt{2}=0$與直線$x+2y-6\sqrt{2}=0$之間的距離不大于1,命題q:橢圓2x2+27y2=54與雙曲線9x2-16y2=144有相同的焦點,則下列命題為真命題的是( 。
A.p∧(¬q)B.(¬p)∧qC.(¬p)∧(¬q)D.p∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.sin390°等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案