解:(Ⅰ)取PB得中點M,則有CM∥平面PDA,證明如下:
取AB中點N,則MN∥PA,PA?平面PDA,MN?平面PDA,
∴MN∥平面PDA
連接CN,則AN∥CD且AN=CD=1,
∴四邊形ANCD是平行四邊形
∴CN∥AD,AD?平面PDA,CN?平面PDA,
∴CN∥平面PDA
又MN∩CN=N,∴平面MCN∥平面PDA,CM?平面MCN
∴CN∥平面PDA.
(Ⅱ)由(Ⅰ):M為PB的中點,則V
P-ADM=V
B-ADM在△ABD中,AB-2,AB邊上的高h=BC=1,
∴

BM=

,∴

所以三棱錐P-ADM的體積是

.
分析:(Ⅰ)取PB得中點M,則有CM∥平面PDA,證明如下:取AB中點N,則MN∥PA,PA?平面PDA,MN?平面PDA,所以MN∥平面PDA.由題意得四邊形ANCD是平行四邊形,所以CN∥AD,AD?平面PDA,CN?平面PDA,所以CN∥平面PDA,所以平面MCN∥平面PDA,∴CN∥平面PDA.
(Ⅱ)由(Ⅰ):M為PB的中點,則V
P-ADM=V
B-ADM,在△ABD中,AB-2,AB邊上的高h=BC=1,∴

BM=

,所以三棱錐P-ADM的體積是

.
點評:解決探索性問題應該先利用代點檢驗的方法找到點,一般是線段的端點或線段的中點,求三棱錐的體積時當三棱錐的高與底面積不易求時,應該根據條件判斷是否存在于已知三棱錐體積相等的三棱錐.