精英家教網 > 高中數學 > 題目詳情

【題目】在如圖(1)梯形中,,過,,沿翻折后得圖(2),使得,又點滿足,連接,且.

1)證明:平面;

2)求平面與平面所成的二面角的余弦值.

【答案】1)見解析(2

【解析】

1)連接交于點,由,得到,由比例關系得到,再由線面平行的判定定理證明.

2)根據由,得四邊形為平行四邊形,由,,得,再由,得平面,所以,從而平面,以點為原點,軸,軸,軸,建立空間直角坐標系,求出相應點的坐標,分別求得平面BMD和平面得一個法向量,再利用面面角的向量法求解.

1)如圖所示:

連接交于點,,則

,,

平面,平面,

平面.

2)證明:由,

得四邊形為平行四邊形,

所以,,

所以,

所以,

,

所以平面,所以,

,平面

以點為原點,軸,軸,軸,建立空間直角坐標系,

,

所以

設平面BMD的一個法向量為,

所以

,則,

又平面得一個法向量為,

所以

又平面與平面所成的二面角顯然為銳角,

所以平面與平面所成的二面角的余弦值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)寫出的普通方程和的直角坐標方程;

(2)設點上,點上,求的最小值及此時的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】由我國引領的5G時代已經到來,5G的發(fā)展將直接帶動包括運營、制造、服務在內的通信行業(yè)整體的快速發(fā)展,進而對增長產生直接貢獻,并通過產業(yè)間的關聯效應和波及效應,間接帶動國民經濟各行業(yè)的發(fā)展,創(chuàng)造岀更多的經濟增加值.如圖是某單位結合近年數據,對今后幾年的5G經濟產出所做的預測.結合下圖,下列說法正確的是(

A.5G的發(fā)展帶動今后幾年的總經濟產出逐年增加

B.設備制造商的經濟產出前期增長較快,后期放緩

C.設備制造商在各年的總經濟產出中一直處于領先地位

D.信息服務商與運營商的經濟產出的差距有逐步拉大的趨勢

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國有個名句運籌帷幄之中,決勝千里之外”.其中的原意是指《孫子算經》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數時,像阿拉伯計數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,個位,百位,萬位數用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是:,則7288用算籌式可表示為__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖(1)梯形中,,過,,沿翻折后得圖(2),使得,又點滿足,連接,且.

1)證明:平面;

2)求三棱錐外接球的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017高考新課標Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC;

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】的直線與拋物線交于,兩點,以兩點為切點分別作拋物線的切線,,設交于點.

1)求;

2)過,的直線交拋物線,兩點,證明:,并求四邊形面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南北朝時期數學家、天文學家——祖暅,提出了著名的祖暅原理:“冪勢既同,則積不容異也”.“冪”是截面積,“勢”是幾何體的高,意思是兩等高幾何體,若在每一等高處的兩截面面積都相等,則兩幾何體體積相等.已知某不規(guī)則幾何體與如圖三視圖所對應的幾何體滿足祖暅原理,則該不規(guī)則幾何體的體積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數是定義為R的偶函數,且對任意的,都有且當時, ,若在區(qū)間內關于的方程恰好有3個不同的實數根,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案