1.已知數(shù)列{an}是公差為2的等差數(shù)列,且a1,a2,a4成等比數(shù)列,則a1等于( 。
A.0B.$\frac{1}{5}$C.2D.0或2

分析 由等差數(shù)列的通項公式和等比數(shù)列的性質(zhì)列出方程,由此能求出首項.

解答 解:∵數(shù)列{an}是公差為2的等差數(shù)列,且a1,a2,a4成等比數(shù)列,
∴${{a}_{2}}^{2}={a}_{1}{a}_{4}$,即$({a}_{1}+2)^{2}={a}_{1}({a}_{1}+6)$,
解得a1=2.
故選:C.

點評 本題考查等差數(shù)列的首項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序,則輸入的i的值為( 。
A.-1B.0C.-1或2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.“開心辭典”中有這樣個問題:給出一組數(shù),要你根據(jù)規(guī)律填出后面的第幾個數(shù),現(xiàn)給出一組數(shù):$-\frac{1}{2},\frac{1}{2},-\frac{3}{8},\frac{1}{4},-\frac{5}{32}$,它的第8個數(shù)可以是$\frac{1}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某食品廠為了檢查甲乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量值落在(495,510]的產(chǎn)品為合格品,否則為不合格品.圖1是甲流水線樣本的頻率分布直方圖,表1是乙流水線樣本頻數(shù)分布表.
表1:(乙流水線樣本頻數(shù)分布表) 
產(chǎn)品重量(克)頻數(shù)
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
(Ⅰ)若以頻率作為概率,試估計從甲流水線上任取5件產(chǎn)品,求其中合格品的件數(shù)X的數(shù)學(xué)期望; (Ⅱ)從乙流水線樣本的不合格品中任意取x2+y2=2件,求其中超過合格品重量的件數(shù)l:y=kx-2的分布列;(Ⅲ)由以上統(tǒng)計數(shù)據(jù)完成下面$\frac{π}{2}$列聯(lián)表,并回答有多大的把握認(rèn)為“產(chǎn)品的包裝質(zhì)量與兩條資動包裝流水線的選擇有關(guān)”.
甲流水線乙流水線合計
合格品a=b=
不合格品c=d=
合 計n=
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的臨界值表供參考:
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若xlog32≥-1,則函數(shù)f(x)=4x-2x+1-3的最小值為(  )
A.-4B.-3C.$-\frac{32}{9}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)={log_2}x,x∈[\frac{1}{2},4]$,在區(qū)間$[\frac{1}{2},4]$上任取一點x0,則f(x0)≤0的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某小賣部為了研究氣溫對熱飲銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)y與當(dāng)天氣溫(平均溫度)x/°C的對比表:
 x 0 1 3 4
 y 140 136 129 125
(1)請在圖a中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)如果某天的氣溫是5°C,試根據(jù)(2)求出的線性回歸方程預(yù)測這天大約可以賣出的熱飲杯數(shù).
參考公式:最小二乘法求線性回歸方程系數(shù)公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-,{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
參考數(shù)據(jù):0×140+1×136+3×129+4×125=1023,(140+136+129+125)÷4=132.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)$f(x)=lnx-ax-\frac{1}{x}-1$.
(1)當(dāng)a=1時,求曲線f(x)在x=1處的切線方程;
(2)當(dāng)$a=\frac{3}{4}$時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù)$g(x)={x^2}-2bx-\frac{5}{12}$,若對于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,函數(shù)y=f(x)的圖象在點P處的切線方程是y=-x+5,則f(3)+f'(3)=1.

查看答案和解析>>

同步練習(xí)冊答案