已知曲線C:y=x3+2和點(diǎn)P(1,3),則過點(diǎn)P且與曲線C相切的直線方程為
3x-y=0或3x-4y+9=0
3x-y=0或3x-4y+9=0
分析:設(shè)切點(diǎn)為(x0,y0),則y0=x03+2,由于直線l經(jīng)過P,由斜率公式即得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點(diǎn)x0處的切線斜率,便可建立關(guān)于x0的方程.求得x0,從而求得過點(diǎn)P且與曲線C相切的直線方程.
解答:解:設(shè)直線與曲線切于點(diǎn)(x0,y0)(x0≠0),則k=
y0-3
x0-1
,
∵y0=x03+2,
y0-3
x0-1
=x02+x0+1,
又∵k=y′|_x=x0=3x02,
∴x02+x0+1=3x02,∴2x02-x0-1=0,
∵x0=1,或x0=-
1
2
,∴k=3x02=3或
3
4
,
故直線l的方程3x-y=0或3x-4y+9=0.
故答案為3:x-y=0或3x-4y+9=0.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,會(huì)根據(jù)一點(diǎn)坐標(biāo)和斜率寫出直線的方程,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3及其上一點(diǎn)P1(1,1),過P1作C的切線l1,l1與C的另一公共點(diǎn)為P2(不同于P1),過P2作C的切線l2,l2與C的另一公共點(diǎn)為P3(不同于P2),…,得到C的一列切線l1,l2,…,ln,…,相應(yīng)的切點(diǎn)分別為P1,P2,…,Pn,….
(1)求Pn的坐標(biāo);
(2)設(shè)ln到ln+1的角為θn,求
limn→∞
tanθn
之值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2+2x
(1)求曲線C上斜率最小的切線方程.
(2)過原點(diǎn)引曲線C的切線,求切線方程及其對(duì)應(yīng)的切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、已知曲線C:y=x3-x+2和點(diǎn)A(1,2),求過點(diǎn)A的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2,直線l:y=-2x
(1)求曲線C與直線l圍成的區(qū)域的面積;
(2)求曲線y=x3-3x2(0≤x≤1)與直線l圍成的圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3
(1)求曲線C上橫坐標(biāo)為1的點(diǎn)處的切線的方程;
(2)第(1)小題中的切線與曲線C是否還有其他的公共點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案