(本小題滿分12分)
已知橢圓C:
(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為
(1)求橢圓C的方程;
(2)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為
,求△AOB面積的最大值.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
過點
且與
有相同漸近線的雙曲線方程是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分).
如圖,已知某橢圓的焦點是
F1(-4,0)、
F2(4,0),過點
F2并垂直于
x軸的直線與橢圓的一個交點為
B,且|
F1B|+|
F2B|=10,橢圓上不同的兩點
A(
x1,
y1),
C(
x2,
y2)滿足條件:|
F2A|、|
F2B|、|
F2C|成等差數(shù)列.
(1)求該弦橢圓的方程;
(2)求弦
AC中點的橫坐標;
(3)設弦
AC的垂直平分線的方程為
y=
kx+
m,求
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
若橢圓
C1:
+
=1(0<
b<2)的離心率等于
,拋物線
C2:
x2=2
py(
p>0)的焦點在橢圓
C1的頂點上.
(Ⅰ)求拋物線
C2的方程;
(Ⅱ)若過
M(-1,0)的直線
l與拋物線
C2交于
E、
F兩點,又過
E、
F作拋物線
C2的切線
l1、
l2,當
l1⊥
l2時,求直線
l的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分15分)已知橢圓
的左焦點
是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線
交橢圓于C、D兩點,記直線AD、BC的斜率分別為
(1)當點D到兩焦點的距離之和為4,直線
軸時,求
的值;
(2)求
的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)橢圓的兩個焦點分別為F
1(0,-2
),F(xiàn)
2(0,2
),離心率e =
。(Ⅰ)求橢圓方程;(Ⅱ)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為-
,求直線l傾斜角的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若點(x,y)在橢圓
上,則
的最小值為( )
A.1 | B.-1 | C.- | D.以上都不對 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
,
的左焦點
,作
軸的垂線交橢圓于點
,
為右焦點。若
,則橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(18分)已知橢圓C:
,在曲線C上是否存在不同兩點A、B關于直線
(m為常數(shù))對稱?若存在,求出
滿足的條件;若不存在,說明理由。
查看答案和解析>>