(本小題滿分12分)
已知橢圓C: (a>b>0)的離心率為,短軸一個端點到右焦點的距離為
(1)求橢圓C的方程;
(2)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

過點且與有相同漸近線的雙曲線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分).
如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;
(2)求弦AC中點的橫坐標;
(3)設弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓C1=1(0<b<2)的離心率等于,拋物線C2x2=2py(p>0)的焦點在橢圓C1的頂點上.
(Ⅰ)求拋物線C2的方程;
(Ⅱ)若過M(-1,0)的直線l與拋物線C2交于EF兩點,又過E、F作拋物線C2的切線l1、l2,當l1l2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)已知橢圓的左焦點是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線交橢圓于C、D兩點,記直線AD、BC的斜率分別為
(1)當點D到兩焦點的距離之和為4,直線軸時,求的值;
(2)求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)橢圓的兩個焦點分別為F1(0,-2),F(xiàn)2(0,2),離心率e =。(Ⅰ)求橢圓方程;(Ⅱ)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為-,求直線l傾斜角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點(x,y)在橢圓上,則的最小值為(  )
A.1 B.-1C.-D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的左焦點,作軸的垂線交橢圓于點為右焦點。若,則橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(18分)已知橢圓C:,在曲線C上是否存在不同兩點A、B關于直線(m為常數(shù))對稱?若存在,求出滿足的條件;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案