(18分)已知橢圓C:
,在曲線C上是否存在不同兩點(diǎn)A、B關(guān)于直線
(m為常數(shù))對稱?若存在,求出
滿足的條件;若不存在,說明理由。
。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)分別為
,離心率
.
(1)求橢圓的方程.
(2)一條不與坐標(biāo)軸平行的直線
與橢圓交于不同的兩點(diǎn)
,且線段
的中點(diǎn)的橫坐標(biāo)為
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
橢圓
的離心率為
分別是左、右焦點(diǎn),過F
1的直線與圓
相切,且與橢圓E交于A、B兩點(diǎn)。
(1)當(dāng)
時(shí),求橢圓E的方程;
(2)求弦AB中點(diǎn)的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
求過點(diǎn)
,且與橢圓
有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,且過
,設(shè)點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若
是橢圓上的動點(diǎn),求線段
中點(diǎn)
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓C:
(a>b>0)的離心率為
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為
,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
若橢圓
C1:
的離心率等于
,拋物線
C2:
x2=2
py(
p>0)的焦點(diǎn)在橢圓
C1的頂點(diǎn)上.
(1)求拋物線
C2的方程;
(2)若過
M(-1,0)的直線
l與拋物線
C2交于
E、
F兩點(diǎn),又過
E、
F作拋物線
C2的切線
l1、
l2,當(dāng)
l1⊥
l2時(shí),求直線
l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分) 如圖,設(shè)橢圓
的右頂點(diǎn)與上頂點(diǎn)分別
為A、B,以A為圓心,OA為半徑的圓與以B為圓心,OB為半徑的圓相交于點(diǎn)O、P.
(1)求點(diǎn)P的坐標(biāo);
(2) 若點(diǎn)P在直線
上,求橢圓的離心率;
(3) 在(2)的條件下,設(shè)M是橢圓上的一動點(diǎn),且點(diǎn)N(0,1)到橢圓上點(diǎn)的最近距離為3,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過橢圓
中心的直線與橢圓交于A、B兩點(diǎn),右焦點(diǎn)為F
2,則△ABF
2 的最大面積是( )
A.
B.
C.
D.
查看答案和解析>>