在平面直角坐標(biāo)系
中,點
到兩點
,
的距離之和為
,設(shè)點
的軌跡為曲線
.
(1)寫出
的方程;
(2)設(shè)過點
的斜率為
(
)的直線
與曲線
交于不同的兩點
,
,點
在
軸上,且
,求點
縱坐標(biāo)的取值范圍.
(1)
(2)
試題分析:解:(Ⅰ)由題設(shè)知
,
根據(jù)橢圓的定義,
的軌跡是焦點為
,
,長軸長為
的橢圓,
設(shè)其方程為
則
,
,
,所以
的方程為
.
(II)依題設(shè)直線
的方程為
.將
代入
并整理得,
.
.
設(shè)
,
,則
,
設(shè)
的中點為
,則
,
,
即
.
因為
,所以直線
的垂直平分線的方程為
,
令
解得,
,
當(dāng)
時,因為
,所以
;
當(dāng)
時,因為
,所以
.
綜上得點
縱坐標(biāo)的取值范圍是
.
點評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點時,常用到根與系數(shù)的關(guān)系式:
(
)。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
過點
,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與
軸正半軸、
軸分別交于點
,與橢圓分別交于點
,各點均不重合,且滿足
,
. 當(dāng)
時,試證明直線過定點.過定點(1,0)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)直線
是曲線
的一條切線,
.
(Ⅰ)求切點坐標(biāo)及
的值;
(Ⅱ)當(dāng)
時,存在
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
上一定點B(-1,0)和兩個動點
,當(dāng)
時,點
的橫坐標(biāo)的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的漸近線與圓
相切,則雙曲線的離心率為( )
A. | B.2 | C. | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
曲線C:
,(
為參數(shù))的普通方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知F
1、F
2分別為橢圓C
1:
的上、下焦點,其中F
1也是拋物線C
2:
的焦點,點A是曲線C
1,C
2在第二象限的交點,且
(Ⅰ)求橢圓
1的方程;
(Ⅱ)已知P是橢圓C
1上的動點,MN是圓C:
的直徑,求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知中心在坐標(biāo)原點焦點在
軸上的橢圓C,其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點
(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
分別是橢圓的
左,右焦點。
(Ⅰ)若
是第一象限內(nèi)該橢圓上的一點,且
,求點
的坐標(biāo)。
(Ⅱ)設(shè)過定點
的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標(biāo)原點),求直線
的斜率
的取值范圍。
查看答案和解析>>