曲線C:
,(
為參數(shù))的普通方程為 ( )
試題分析:
即
,所以,
,選C。
點評:簡單題,注意一般的“消參”方法,涉及正弦、余弦函數(shù),一般采用平方關(guān)系消元法。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,南北方向的公路
,A地在公路正東2 km處,B地在A東偏北30
0方向2
km處,河流沿岸曲線
上任意一點到公路
和到
地距離相等.現(xiàn)要在曲線
上一處建一座碼頭,向
兩地運貨物,經(jīng)測算,從
到
、到
修建費用都為a萬元/km,那么,修建這條公路的總費用最低是( )萬元
A.(2+)a | B.2(+1)a | C.5a | D.6ª |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線y
2=4x的準線過雙曲線
-
=1(a>0,b>0)的左頂點,且此雙曲線的一條漸
近線方程為y=2x,則雙曲線的焦距等于 ( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,則以A、B為焦點,且過D、E的橢圓與雙曲線的離心率分別為
,則
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系
中,點
到兩點
,
的距離之和為
,設(shè)點
的軌跡為曲線
.
(1)寫出
的方程;
(2)設(shè)過點
的斜率為
(
)的直線
與曲線
交于不同的兩點
,
,點
在
軸上,且
,求點
縱坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)
、
分別為雙曲線
的左、右焦點.若在雙曲線右支上存在點
,滿足
,且
到直線
的距離等于雙曲線的實軸長,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)橢圓
的右焦點為
,直線
與
軸交于點
,若
(其中
為坐標原點).
(I)求橢圓
的方程;
(II)設(shè)
是橢圓
上的任意一點,
為圓
的任意一條直徑(
、
為直徑的兩個端點),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
,直線
截拋物線
C所得弦長為
.
(1)求拋物線的方程;
(2)已知
是拋物線上異于原點
的兩個動點,記
若
試求當
取得最小值時
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的一條漸近線方程是y=
,它的一個焦點在拋物線
的準線上,則雙曲線的方程為
查看答案和解析>>