20.若${∫}_{1}^{a}$(x2+$\frac{1}{x}$)dx=$\frac{26}{3}$+ln3,則a的值是3.

分析 根據(jù)定積分的計(jì)算法則得到關(guān)于a的方程,解得即可.

解答 解:${∫}_{1}^{a}$(x2+$\frac{1}{x}$)dx=($\frac{1}{3}{x}^{3}$+lnx)|${\;}_{1}^{a}$=$\frac{1}{3}$a3+lna-$\frac{1}{3}$-ln1=$\frac{26}{3}$+ln3,
∴a=3,
故答案為:3.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減的是(  )
A.y=x3B.y=$\frac{1}{x-1}$C.y=log2$\frac{1}{x}$D.y=-tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=2x3+3ax2-12bx+3在x=-2和x=1處有極值.
(1)求出f(x)的解析式;
(2)指出f(x)的單調(diào)區(qū)間;
(3)求f(x)在[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在多面體ABCDEFG中,四邊形ABCD與CDEF均為邊長(zhǎng)為4的正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH.
(1)求證:GH⊥平面EFG;
(2)求三棱錐G-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)命題p:|2x-1|≤3;命題q:x2-(2a+1)x+a(a+1)≤0,若¬q是¬p的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求由三條曲線(xiàn):y=x2,y=$\frac{1}{3}$x2,y=2 所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)y=3sin(2x+$\frac{π}{4})-2$-2.
(Ⅰ)求f(x)最小正周期,對(duì)稱(chēng)軸及對(duì)稱(chēng)中心;
(Ⅱ)求f(x)在區(qū)間[0,π]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,角A為鈍角,且sinA=$\frac{3}{5}$,點(diǎn)P、Q分別是在角A的兩邊上不同于點(diǎn)A的動(dòng)點(diǎn).
(1)若AP=5,PQ=3$\sqrt{5}$,求AQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=$\frac{12}{13}$,求cos(α+β)和cos(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊過(guò)點(diǎn)(-3,4),則cos α的值為$-\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案