【題目】設(shè)A是單位圓O和x軸正半軸的交點(diǎn),P,Q是圓O上兩點(diǎn),O為坐標(biāo)原點(diǎn),∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( , ),求cos(α﹣ )的值;
(2)設(shè)函數(shù)f(α)=sinα( ),求f(α)的值域.
【答案】
(1)解:由已知得cosα= ,sinα= ,
∴cos( )= + × = .
(2)【解答】解: =( , ), =(cosα,sinα),
∴ = cosα+ sinα,
∴f(α)= sinαcosα+ sin2α= sin2α﹣ cos2α+ = sin(2α﹣ )+ .
∵α∈[0, ],∴2α﹣ ∈[﹣ , ],
∴當(dāng)2α﹣ =﹣ 時(shí),f(α)取得最小值 + =0,
當(dāng)2α﹣ = 時(shí),f(α)取得最大值 = .
∴f(α)的值域是[0, ].
【解析】(1)利用兩角差的余弦公式計(jì)算;(2) 利用三角恒等變換化簡(jiǎn)f(α),再利用α的范圍和正弦函數(shù)圖像的性質(zhì)求出f(α)的值域。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四棱錐 中,四邊形 為平行四邊形, 為等邊三角形,AABE是以 為直角的等腰直角三角形,且 .
(1)證明: 平面 平面BCE;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min.在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再?gòu)?/span>B勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130 m/min,山路AC長(zhǎng)為1260 m,經(jīng)測(cè)量,cos A=,cos C=
(1)求索道AB的長(zhǎng);
(2)問(wèn)乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)獨(dú)游戲越來(lái)越受人們喜愛(ài),今年某地區(qū)科技館組織數(shù)獨(dú)比賽,該區(qū)甲、乙、丙、丁四所學(xué)校的學(xué)生積極參賽,參賽學(xué)生的人數(shù)如表所示:
中學(xué) | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 30 | 40 | 20 | 10 |
為了解參賽學(xué)生的數(shù)獨(dú)水平,該科技館采用分層抽樣的方法從這四所中學(xué)的參賽學(xué)生中抽取30名參加問(wèn)卷調(diào)查.
(Ⅰ)問(wèn)甲、乙、丙、丁四所中學(xué)各抽取多少名學(xué)生?
(Ⅱ)從參加問(wèn)卷調(diào)查的30名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來(lái)自同一所中學(xué)的概率;
(Ⅲ)在參加問(wèn)卷調(diào)查的30名學(xué)生中,從來(lái)自甲、丙兩所中學(xué)的學(xué)生中隨機(jī)抽取2名,用X表示抽得甲中學(xué)的學(xué)生人數(shù),求X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+ )= .圓O的參數(shù)方程為 (θ為參數(shù),r>0).
(Ⅰ)求圓O的圓心的極坐標(biāo)(ρ≥0,0≤θ<2π );
(Ⅱ)當(dāng)r為何值時(shí),圓O上的點(diǎn)到直線l的最大距離為2+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若離散型隨機(jī)變量ξ的概率分布如表所示,則a的值為( )
ξ | ﹣1 | 1 |
P | 4a﹣1 | 3a2+a |
A.
B.﹣2
C. 或﹣2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分別是SA、SC的中點(diǎn).
(I)求證:平面ACD⊥平面BCD;
(II)求二面角S﹣BD﹣E的平面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是首項(xiàng)為 ,公比為﹣ 的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1 , 并寫出數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn= , 求證:數(shù)列{cn}中的任意一項(xiàng)總可以表示成該數(shù)列其他兩項(xiàng)之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量問(wèn)題,全民關(guān)注,有需求就有研究,某科研團(tuán)隊(duì)根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問(wèn)題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過(guò)測(cè)試得到霧炮降塵率的頻率分布直方圖:
若降塵率達(dá)到18%以上,則認(rèn)定霧炮除塵有效.
(1)根據(jù)以上數(shù)據(jù)估計(jì)霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個(gè)區(qū)域,每個(gè)區(qū)域投放3臺(tái)霧炮進(jìn)行除塵(霧炮之間工作互不影響),若在一個(gè)區(qū)域內(nèi)的3臺(tái)霧炮降塵率都低于18%,則需對(duì)該區(qū)域后期追加投入20萬(wàn)元繼續(xù)進(jìn)行治理,求后期投入費(fèi)用的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com