A. | $({0,\frac{π}{6}}]$ | B. | $({0,\frac{π}{3}}]$ | C. | $[{\frac{π}{6},π})$ | D. | $[{\frac{π}{3},π})$ |
分析 由已知可得(a-b+c)(a+b-c)≤bc,整理可得:b2+c2-a2≥bc,利用余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$≥$\frac{bc}{2bc}$=$\frac{1}{2}$,利用余弦函數(shù)的圖象和性質(zhì)即可得解A的范圍.
解答 解:∵$\frac{a-b+c}≤\frac{c}{a+b-c}$,
又∵由于三角形兩邊之和大于第三邊,可得a+c-b>0,a+b-c>0,且b,c>0,
∴(a-b+c)(a+b-c)≤bc,整理可得:b2+c2-a2≥bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$≥$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,$\frac{π}{3}$).
故選:B.
點評 本題主要考查了余弦定理,余弦函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,考查了計算能力和數(shù)形結(jié)合能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,2] | C. | $[{\frac{1}{2},+∞})$ | D. | $[{\frac{1}{4},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com