A. | f(x)=$\sqrt{{{(x-1)}^2}}$,g(x)=x-1 | B. | f(x)=x-1,g(t)=t-1 | ||
C. | f(x)=$\sqrt{{x^2}-1}$,g(x)=$\sqrt{x+1}$•$\sqrt{x-1}$ | D. | f(x)=x,g(x)=$\frac{x^2}{x}$ |
分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,即可判斷兩個(gè)函數(shù)是相等的函數(shù).
解答 解:A,f(x)=$\sqrt{{(x-1)}^{2}}$=|x-1|的定義域是R,g(x)=x-1的定義域是R,對應(yīng)關(guān)系不相同,所以不是相等函數(shù);
B,f(x)=x-1的定義域是R,g(t)=t-1的定義域是R,對應(yīng)關(guān)系也相同,所以是相等函數(shù);
C,f(x)=$\sqrt{{x}^{2}-1}$的定義域是(-∞,-1]∪[1,+∞),g(x)=$\sqrt{x+1}$•$\sqrt{x-1}$=$\sqrt{{x}^{2}-1}$的定義域是[1,+∞),定義域不同,不是相等函數(shù);
D,f(x)=x的定義域是R,g(x)=$\frac{{x}^{2}}{x}$=x的定義域是{x|x≠0},定義域不同,不是相等函數(shù).
故選:B.
點(diǎn)評 本題考查了判斷兩個(gè)函數(shù)是否為相等函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 31 | B. | 15 | C. | 7 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com