6.已知四邊形ABCD,對角線AC,BD互相垂直且內(nèi)接于圓O,AB+BC+CD+DA=8,則點O到四邊形各邊距離之和為4.

分析 取特殊值,令四邊形ABCD是邊長為2的正方形,則點O是對角線AC、BD的交點,由此能求出點O到四邊形各邊距離之和.

解答 解:∵四邊形ABCD,對角線AC,BD互相垂直且內(nèi)接于圓O,AB+BC+CD+DA=8,
∴取特殊值,令四邊形ABCD是邊長為2的正方形,
則點O是對角線AC、BD的交點,
∴點O到四邊形各邊距離之和為4×1=4.
故答案為:4.

點評 本題考查圓心到內(nèi)接四邊形四邊距離之和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,合理地選取特殊值能有效地簡化運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖所示,求一個棱長為$\sqrt{2}$的正四面體的體積,可以看成一個棱長為1的正方體切去四個角后得到,類比這種分法,一個相對棱長都相等的四面體A-BCD,其三組棱長分別為AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,AC=BD=$\sqrt{10}$,則此四面體的體積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\sqrt{x-4}$+$\sqrt{15-3x}$,下述判斷中正確的是( 。
A.最大值是2,最小值是0B.最大值是3,最小值是2
C.最大值是3,最小值是1D.最大值是2,最小值是1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.拋物線y2=2px(p>0)上一點M(x0,8)到焦點的距離是10,則x0=(  )
A.1或8B.1或9C.2或8D.2或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}(n∈N*)是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(1)求{an}的通項公式;
(2)已知bn=$\frac{2}{3}{log_2}{a_n}+1,{c_n}=\frac{1}{{{b_{n-1}}{b_n}}}$(n≥2),其中c1=3,令Sn=c1+c2+c3+…+cn,若Sn<$\frac{m-2007}{2}$對一切n∈N*恒成立,求滿足條件的最小整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,側(cè)棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點.
(1)求證:AM∥平面SCD;
(2)求平面SCD與平面SAB所成的二面角的余弦值;
(3)設(shè)點N是直線CD上的動點,MN與平面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義在R上的函數(shù)f(x)滿足f(x+5)=f(x),且$f(x)=\left\{\begin{array}{l}-{(x+3)^2},\;\;-2≤x<0\\ x,\;\;\;0≤x<3\end{array}\right.$,則f(1)+f(2)+f(3)+…+f(2013)=810.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知PA是⊙O相切,A為切點,PBC為割線,弦CD∥AP,AD、BC相交于E點,F(xiàn)為CE上一點,且DE2=EF•EC.
(Ⅰ)求證:A、P、D、F四點共圓;
(Ⅱ)若AE•ED=12,DE=EB=3,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)列{an}的通項公式為${a_n}=cos\frac{nπ}{2},n∈{N^*}$,其前n項和為Sn,則S2016=(  )
A.1008B.-1008C.-1D.0

查看答案和解析>>

同步練習(xí)冊答案