準(zhǔn)線方程x=-1的拋物線的標(biāo)準(zhǔn)方程為
 
考點:拋物線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:直接由拋物線的準(zhǔn)線方程設(shè)出拋物線方程,再由準(zhǔn)線方程求得p,則拋物線標(biāo)準(zhǔn)方程可求.
解答: 解:∵拋物線的準(zhǔn)線方程為x=-1,
∴可設(shè)拋物線方程為y2=2px(p>0),
由準(zhǔn)線方程x=-
p
2
=-1
,得p=2.
∴拋物線的標(biāo)準(zhǔn)方程為y2=4x.
故答案為:y2=4x.
點評:本題考查了拋物線的標(biāo)準(zhǔn)方程,考查了拋物線的簡單幾何性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x2+6<5x,y=x2+5x+6,則有( 。
A、y為任意實數(shù)
B、0<y<20
C、20<y<30
D、y>30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
kx+k(a-1),x≥0
1
3
x3-
1
2
ax2+(a-1)x-a2+2a-2,x<0
,其中a∈R,若對任意的非零的實數(shù)x1,存在唯一的非零的實數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,則k的最大值為( 。
A、-1B、-2C、-4D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2y-1=0關(guān)于直線y=x對稱的圓的方程是( 。
A、(x-1)2+y2=2
B、(x+1)2+y2=2
C、(x-1)2+y2=22
D、(x+1)2+y2=22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+2x-3=0.
(1)求過點P(1,3)且與圓C相切的直線方程;
(2)問是否存在斜率為1的直線l,使以l被圓C截得的弦AB為直線的圓經(jīng)過原點?若存在,請求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,bc為實數(shù),則下列命題中正確的是( 。
A、若a>b,則ac2>bc2
B、若a<b,則a+c<b+c
C、若a<b,則ac<bc
D、若a<b,則
1
a
1
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程2x=a2有負(fù)實數(shù)根,則實數(shù)a的取值范圍是(  )
A、(-1,1)
B、(-∞,0)∪(0,+∞)
C、(-1,0)∪(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的所有頂點都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=
2
,則球O的表面積是(  )
A、4π
B、
3
4
π
C、3π
D、
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)部門調(diào)研發(fā)現(xiàn),該公司第二、三季度的用電量與月份線性相關(guān),數(shù)據(jù)統(tǒng)計如表:
月份456789
用電量(千瓦時)61627554656
但核對電費報表時發(fā)現(xiàn)一組數(shù)據(jù)統(tǒng)計有誤.
(Ⅰ)請畫散點圖,指出哪組數(shù)據(jù)有誤,并說明理由;
(Ⅱ)在排出有誤數(shù)據(jù)后,求用電量與月份之間的回歸直線方程
y
=
b
x+
a
,并預(yù)測統(tǒng)計有誤那個月份的用電量.

查看答案和解析>>

同步練習(xí)冊答案