已知向量
a
=(1,-3,2),
b
=(-2,1,1),則|2
a
+
b
|=(  )
A、50
B、14
C、5
2
D、
14
考點(diǎn):空間向量的夾角與距離求解公式
專題:空間向量及應(yīng)用
分析:利用向量的坐標(biāo)運(yùn)算及其模的計(jì)算公式即可得出.
解答: 解:∵2
a
+
b
=2(1,-3,2)+(-2,1,1)=(0,-5,5).
∴|2
a
+
b
|=
0+52×2
=5
2

故選:C.
點(diǎn)評(píng):本題考查了向量的坐標(biāo)運(yùn)算及其模的計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為:x2+y2+4y-21=0,直線l的方程為:(2m-1)x-(m+1)y+3m=0,(m∈R).
(1)若圓C上恰有3個(gè)點(diǎn)到直線l的距離為3,求直線l的方程:
(2)求直線l被圓C截得的弦長最短時(shí)m的值及最短弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某企業(yè)擬建造一個(gè)體積為V的圓柱型的容器(不計(jì)厚度,長度單位:米).已知圓柱兩個(gè)底面部分每平方米建造費(fèi)用為a千元,側(cè)面部分每平方米建造費(fèi)用為b千元.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān),設(shè)圓柱的底面半徑為r,高為h(h≥2r),該容器的總建造費(fèi)用為y千元.
(1)寫出y關(guān)于r的函數(shù)表達(dá)式,并求出此函數(shù)的定義域;
(2)求該容器總建造費(fèi)用最小時(shí)r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將分針撥慢5分鐘,則分鐘轉(zhuǎn)過的弧度數(shù)是(  )
A、
π
3
B、-
π
3
C、
π
6
D、
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,如果輸入x的值為0,那么輸出的y是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π).若f(x)的圖象過點(diǎn)M(
π
6
,1)及N(
3
,-1),且f(x)在區(qū)間[
π
6
,
3
]上時(shí)單調(diào)的.
(1)求f(x)的解析式;
(2)將f(x)的圖象先向左平移t(t>0)個(gè)單位,再向上平移一個(gè)單位后所得圖象對(duì)應(yīng)函數(shù)為g(x),若g(x)的圖象恰好過原點(diǎn),求t的取值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a∈R,則函數(shù)y=xa和y=-ax+
1
a
在同一坐標(biāo)系內(nèi)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案