【題目】在正方體的8個頂點、12條棱的中點、6個側(cè)面的中心點、1個體的中心點這27個點中,共面6點組的個數(shù)是( )。

A. 1320 B. 1326 C. 1332 D. 1336

【答案】C

【解析】

如圖,設(shè)共面6 組所在的平面為。下面依照分類計數(shù).

1.若為側(cè)面(如),共有6 個側(cè)面,每個側(cè)面上共有9 個點,共形成共面6點組個.

2.若為中截面(如),共有3個,每個中截面上共有9 個點,共形成共面6點組個.

3.若為對角面(如),共有6個,每個面上共有9個點,共形成共面6點組個.

4.若為正六邊形中心斜截面(如),它經(jīng)過體中心,共有4個正六邊形中心斜截面,每個這樣的上共7個點,共形成共面6點組個.

5.若為正三角形斜截面(如),共有個,每個這樣的上共有6 個點,共形成共面6點組個.

6.若為長方形斜截面(如),共有個,每個這樣的上共有6個點,共形成共面6點組個.

7.若為長方形偏截面(如),共有12個,每個這樣的上共有6 個點,共形成共面6點組個.

綜上,所求的共面6點組的個數(shù)為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的方程為:

當極點到直線的距離為時,求直線的直角坐標方程;

若直線與曲線有兩個不同的交點,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設(shè)計了兩種抽獎方案.

方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎機會.

①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;

②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎方案進行促銷活動?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國清朝數(shù)學家李善蘭在1859年翻譯《代數(shù)學》中首次將譯做:函數(shù),沿用至今,為什么這么翻譯,書中解釋說凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù)”1930年美國人給出了我們課本中所學的集合論的函數(shù)定義,已知集合,,給出下列四個對應(yīng)法則,請由函數(shù)定義判斷,其中能構(gòu)成從的函數(shù)的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知過原點O的直線與函數(shù)的圖象交于A,B兩點,分別過A,By軸的平行線與函數(shù)圖象交于CD兩點,若軸,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公園要設(shè)計如圖所示的景觀窗格(其結(jié)構(gòu)可以看成矩形在四個角處對稱地截去四個全等的三角形所得,如圖二中所示多邊形),整體設(shè)計方案要求:內(nèi)部井字形的兩根水平橫軸米,兩根豎軸米,記景觀窗格的外框(如圖二實線部分,軸和邊框的粗細忽略不計)總長度為米.

(1)若,且兩根橫軸之間的距離為米,求景觀窗格的外框總長度;

(2)由于預(yù)算經(jīng)費限制,景觀窗格的外框總長度不超過米,當景觀窗格的面積(多邊形的面積)最大時,給出此景觀窗格的設(shè)計方案中的大小與的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在空間直角坐標系中,已知正四棱錐的高,點分別在軸和軸上,且,點是棱的中點.

(1)求直線與平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調(diào)查該公司職工每周平均上網(wǎng)的時間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時)

男職工

女職工

總計

每周平均上網(wǎng)時間不超過4個小時

每周平均上網(wǎng)時間超過4個小時

70

總計

300

(Ⅰ)應(yīng)收集多少名女職工樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,.試估計該公司職工每周平均上網(wǎng)時間超過4小時的概率是多少?

(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時間超過4個小時.請將每周平均上網(wǎng)時間與性別的列聯(lián)表補充完整,并判斷是否有95%的把握認為“該公司職工的每周平均上網(wǎng)時間與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為

求曲線C的直角坐標方程與直線l的極坐標方程;

若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.

查看答案和解析>>

同步練習冊答案