5.圖1是某學(xué)習(xí)小組學(xué)生數(shù)學(xué)考試成績的莖葉圖,1號到16號的同學(xué)的成績依次為A1,A2,…,A11,圖2是統(tǒng)計莖葉圖中成績在一定范圍內(nèi)的學(xué)生情況的程序框圖,那么該程序框圖輸出的結(jié)果是( 。
A.6B.10C.7D.16

分析 模擬執(zhí)行算法流程圖可知其統(tǒng)計的是數(shù)學(xué)成績大于等于90的人數(shù),由莖葉圖知:數(shù)學(xué)成績大于等于90的人數(shù)為10,從而得解.

解答 解:由算法流程圖可知,其統(tǒng)計的是數(shù)學(xué)成績大于等于90的人數(shù),
所以由莖葉圖知:數(shù)學(xué)成績大于等于90的人數(shù)為10,
因此輸出結(jié)果為10.
故選:B.

點評 本題考查學(xué)生對莖葉圖的認識,通過統(tǒng)計學(xué)知識考查程序流程圖的認識,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.曲線f(x)=ex+5sinx在(0,1)處的切線方程為y=6x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}中,對任意的n∈N*若滿足an+an+1+an+2+an+3=s(s為常數(shù)),則稱該數(shù)列為4階等和數(shù)列,其中s為4階公和;若滿足an•an+1•an+2=t(t為常數(shù)),則稱該數(shù)列為3階等積數(shù)列,其中t為3階公積.已知數(shù)列{pn}為首項為1的4階等和數(shù)列,且滿足$\frac{p_4}{p_3}=\frac{p_3}{p_2}=\frac{p_2}{p_1}=2$;數(shù)列{qn}為公積為1的3階等積數(shù)列,且q1=q2=-1,設(shè)Sn為數(shù)列{pn•qn}的前n項和,則S2016=-2520.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面向量$\overrightarrow{a}$=(-$\sqrt{3}$,m),$\overrightarrow$=(2,1)且$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m的值為( 。
A.$-2\sqrt{3}$B.$2\sqrt{3}$C.$4\sqrt{3}$D.$6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知全集U=R,集合A={x|lgx≥0},$B=\left\{{x\left|{{2^x}≥\sqrt{2}}\right.}\right\}$,則A∩B為(  )
A.{x|x≥1}B.$\left\{{x\left|{x≥\frac{1}{2}}\right.}\right\}$C.{x|0<x≤1}D.$\left\{{x\left|{0<x≤\frac{1}{2}}\right.}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,是一程序框圖,則輸出結(jié)果為75.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=mex-x-1.(其中e為自然對數(shù)的底數(shù))
(1)若曲線y=f(x)過點P(0,1),求曲線y=f(x)在點P(0,1)處的切線方程.
(2)若f(x)的兩個零點為x1,x2且x1<x2,求y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)的值域.
(3)若f(x)>0恒成立,試比較em-1與me-1的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}滿足2Sn=4an-1.則log2a3與log2a9的等差中項為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線$l:\frac{x}{a}+\frac{y}=1({a>0,b>0})$過點A(1,2),則a+8b的最小值為25.

查看答案和解析>>

同步練習(xí)冊答案