A. | 1 | B. | 2 | C. | 3 | D. | 0 |
分析 由3a=4b=6c=k>0,可得a=$\frac{lgk}{lg3}$,b=$\frac{lgk}{lg4}$,c=$\frac{lgk}{lg6}$.
①a、b、c∈R+,k>1,則lgk>0,3a=3$\frac{lgk}{lg3}$=$\frac{lgk}{lg\root{3}{3}}$,4b=4$\frac{lgk}{lg4}$=$\frac{lgk}{lg\root{4}{4}}$,6c=6$\frac{lgk}{lg6}$=$\frac{lgk}{lg\root{6}{6}}$,
通過轉(zhuǎn)化為:$lg\root{3}{3}$=$lg\root{12}{{3}^{4}}$,$lg\root{4}{4}$=$lg\root{12}{{4}^{3}}$,$lg\root{6}{6}$=lg$\root{12}{{6}^{2}}$,進而得出大小關(guān)系.
②a、b、c∈R+,k>1,則$\frac{1}{a}+\frac{2}$=$\frac{lg3}{lgk}$+$\frac{2lg4}{lgk}$=$\frac{lg48}{lgk}$,$\frac{2}{c}$=$\frac{2lg6}{lgk}$=$\frac{lg36}{lgk}$,即可判斷出關(guān)系.
③a、b、c∈R-,則0<k<1,lgk<0,$0<\frac{1}{lg6}$<$\frac{1}{lg4}$<$\frac{1}{lg3}$.即可得出大小關(guān)系.
解答 解:由3a=4b=6c=k>0,
∴a=$\frac{lgk}{lg3}$,b=$\frac{lgk}{lg4}$,c=$\frac{lgk}{lg6}$.
①a、b、c∈R+,k>1,則lgk>0,3a=3$\frac{lgk}{lg3}$=$\frac{lgk}{lg\root{3}{3}}$,4b=4$\frac{lgk}{lg4}$=$\frac{lgk}{lg\root{4}{4}}$,6c=6$\frac{lgk}{lg6}$=$\frac{lgk}{lg\root{6}{6}}$,
∵$lg\root{3}{3}$=$lg\root{12}{{3}^{4}}$,$lg\root{4}{4}$=$lg\root{12}{{4}^{3}}$,$lg\root{6}{6}$=lg$\root{12}{{6}^{2}}$,
$\root{12}{{3}^{4}}$=$\root{12}{81}$>$\root{12}{64}$=$\root{12}{{4}^{3}}$>$\root{12}{{6}^{2}}$=$\root{6}{6}$.
∴$lg\root{3}{3}$>$lg\root{4}{4}$>$lg\root{6}{6}$>0,
∴0<$\frac{1}{lg\root{3}{3}}$<$\frac{1}{lg\root{4}{4}}$<$\frac{1}{lg\root{6}{6}}$,
∴3a<4b<6c.,因此①正確.
②a、b、c∈R+,k>1,則$\frac{1}{a}+\frac{2}$=$\frac{lg3}{lgk}$+$\frac{2lg4}{lgk}$=$\frac{lg48}{lgk}$,$\frac{2}{c}$=$\frac{2lg6}{lgk}$=$\frac{lg36}{lgk}$
∴$\frac{2}{c}=\frac{1}{a}+\frac{2}$不成立,因此②不正確.
③a、b、c∈R-,則0<k<1,lgk<0,$0<\frac{1}{lg6}$<$\frac{1}{lg4}$<$\frac{1}{lg3}$.
∴$\frac{lgk}{lg3}$<$\frac{lgk}{lg4}$<$\frac{lgk}{lg6}$,即a<b<c,因此③正確.
綜上可得:只有①③正確.
故選:B.
點評 本題考查了對數(shù)的運算性質(zhì)、對數(shù)函數(shù)的單調(diào)性、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (0,e) | C. | [1,e) | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com