【題目】已知橢圓的離心率為,分別為左,右焦點,分別為左,右頂點,D為上頂點,原點到直線的距離為.設(shè)點在第一象限,縱坐標(biāo)為t,且軸,連接交橢圓于點.
(1)求橢圓的方程;
(2)(文)若三角形的面積等于四邊形的面積,求直線的方程;
(理)求過點的圓方程(結(jié)果用t表示)
【答案】(1).
(2)(文)(理)
【解析】
(1)通過已知條件求出離心率以及利用點到直線的距離公式求解a,b,即可得到橢圓方程.
(文)設(shè),t>0,直線PA的方程為,聯(lián)立直線與橢圓方程,求出C的坐標(biāo),表示三角形的面積求出t,即可得到PA的方程.
(理)求出BP的垂直平分線,BC的垂直平分線為,求出圓心坐標(biāo),得到圓的方程即可.
(1)因為橢圓的由離心率為,
所以,,所以直線的方程為,
又到直線的距離為,所以,
所以,,
所以橢圓的方程為.
(2)(文),,
直線的方程為,
由,整理得,
解得:,則點的坐標(biāo)是,
因為三角形的面積等于四邊形的面積,所以三角形的面積等于三角形的面積,
,
,
則,解得.
所以直線的方程為.
(理),,
直線的方程為,
由,整理得,
解得:,則點的坐標(biāo)是,
因為,,,
所以的垂直平分線,
的垂直平分線為,
所以過三點的圓的圓心為,
則過三點的圓方程為 ,
即所求圓方程為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求a的值,并證明是R上的增函數(shù);
(2)若關(guān)于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下面兩個的相關(guān)命題的逆命題、否命題、逆否命題,并判斷它們的真假:
(1)命題:若,則.
逆命題:_______________________________________________________(________)
逆否命題:_____________________________________________________(________)
(2)命題:設(shè)是實數(shù),如果,那么有實數(shù)根。
否命題:_______________________________________________________(________)
逆否命題:_____________________________________________________(________)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形, 平面, , , , , 分別為, , 的中點.
(1)求證: 平面;
(2)求平面與平面所成銳二面角的大小;
(3)在線段上是否存在一點,使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,
(1)求該橢圓的標(biāo)準方程;
(2)(文)若是橢圓上的動點,過P作垂直于x軸的垂線,垂足為M,延長MP至N,使得P恰好為MN中點,求點N的軌跡方程;
(理)若已知點,是橢圓上的動點,求線段中點的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出集合
(1)若求證:函數(shù)
(2)由(1)可知,是周期函數(shù)且是奇函數(shù),于是張三同學(xué)得出兩個命題:
命題甲:集合M中的元素都是周期函數(shù);命題乙:集合M中的元素都是奇函數(shù),請對此給出判斷,如果正確,請證明;如果不正確,請舉出反例;
(3)設(shè)為常數(shù),且求的充要條件并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)校擬建一塊五邊形區(qū)域的“讀書角”,三角形區(qū)域ABE為書籍?dāng)[放區(qū),沿著AB、AE處擺放折線形書架(書架寬度不計),四邊形區(qū)域為BCDE為閱讀區(qū),若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CD=m.
(1)求兩區(qū)域邊界BE的長度;
(2)若區(qū)域ABE為銳角三角形,求書架總長度AB+AE的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:,焦點為,其準線與軸交于點.橢圓:分別以、為左、右焦點,其離心率,且拋物線和橢圓的一個交點記為.
(1)當(dāng)時,求橢圓的標(biāo)準方程;
(2)在(1)的條件下,若直線經(jīng)過橢圓的右焦點,且與拋物線相交于,兩點,若弦長等于的周長,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com