【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點(diǎn)到距離的最大值及該點(diǎn)坐標(biāo).

【答案】(1)的普通方程為;曲線C的直角坐標(biāo)方程為(2)曲線C上的點(diǎn)到直線距離的最大值為,該點(diǎn)坐標(biāo)為

【解析】

1)先將直線的參數(shù)方程利用部分分式法進(jìn)行轉(zhuǎn)化,再消參數(shù),即可得解,要注意去除雜點(diǎn);將曲線C的方程先去分母,再將,代入,化簡即可求解;(2)先將曲線C的方程化為參數(shù)形式,再利用點(diǎn)到直線的距離公式,結(jié)合三角函數(shù)求最值,即可得解.

解:(1)由t為參數(shù)),得.

消去參數(shù)t,得的普通方程為

去分母得,

代入,

,

所以曲線C的直角坐標(biāo)方程為.

2)由(1)可設(shè)曲線C的參數(shù)方程為為參數(shù)),

則曲線C上的點(diǎn)到的距離

,

當(dāng),即時,

,

此時,

所以曲線C上的點(diǎn)到直線距離的最大值為,該點(diǎn)坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】詹姆斯·哈登(James Harden)是美國NBA當(dāng)紅球星,自2012年10月加盟休斯頓火箭隊(duì)以來,逐漸成長為球隊(duì)的領(lǐng)袖.2017-18賽季哈登當(dāng)選常規(guī)賽MVP(最有價值球員).

年份

2012-13

2013-14

2014-15

2015-16

2016-17

2017-18

年份代碼t

1

2

3

4

5

6

常規(guī)賽場均得分y

25.9

25.4

27.4

29.0

29.1

30.4

(Ⅰ)根據(jù)表中數(shù)據(jù),求y關(guān)于t的線性回歸方程*);

(Ⅱ)根據(jù)線性回歸方程預(yù)測哈登在2019-20賽季常規(guī)賽場均得分.

(附)對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,

(參考數(shù)據(jù),計算結(jié)果保留小數(shù)點(diǎn)后一位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018131日晚上月全食的過程分為初虧、食既、食甚、生光、復(fù)圓五個階段,月食的初虧發(fā)生在1948分,2051分食既,2129分食甚,2207分生光,2311分復(fù)圓.月全食伴隨有藍(lán)月亮和紅月亮,全食階段的紅月亮在食既時刻開始,生光時刻結(jié)束.小明準(zhǔn)備在19552156之間的某個時刻欣賞月全食,則他等待紅月亮的時間不超過30分鐘的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為認(rèn)真貫徹落實(shí)黨中央國務(wù)院決策部署,堅(jiān)持房子是用來住的,不是用來炒的定位,堅(jiān)持調(diào)控政策的連續(xù)性和穩(wěn)定性,進(jìn)一步穩(wěn)定某省市商品住房市場,該市人民政府辦公廳出臺了相關(guān)文件來控制房價,并取得了一定效果,下表是20192月至6月以來該市某城區(qū)的房價均值數(shù)據(jù):

(月份)

2

3

4

5

6

(房價均價:千元/平方米)

9.80

9.70

9.30

9.20

已知:

1)若變量具有線性相關(guān)關(guān)系,求房價均價(千元/平方米)關(guān)于月份的線性回歸方程

2)根據(jù)線性回歸方程預(yù)測該市某城區(qū)7月份的房價.

(參考公式:用最小二乘法求線性回歸方程的系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國隊(duì)與韓國隊(duì)相遇,中國隊(duì)男子選手A,BC,DE依次出場比賽,在以往對戰(zhàn)韓國選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會釆用53勝制,先贏3局者獲得勝利.

1)在決賽中,中國隊(duì)以31獲勝的概率是多少?

2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角中,,通過以直線為軸順時針旋轉(zhuǎn)得到(.點(diǎn)為斜邊上一點(diǎn).點(diǎn)為線段上一點(diǎn),且.

1)證明:平面;

2)當(dāng)直線與平面所成的角取最大值時,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列說法正確的是(

A.當(dāng)時,處的切線方程為

B.當(dāng)時,存在唯一極小值點(diǎn),且

C.對任意上均存在零點(diǎn)

D.存在,上有且只有一個零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從廣安市某中學(xué)校的名男生中隨機(jī)抽取名測量身高,被測學(xué)生身高全部介于cmcm之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,...,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為.

1)求第七組的頻率;

2)估計該校名男生的身高的中位數(shù)以及身高在cm以上(含cm)的人數(shù);

3)若從樣本中身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,求抽出的兩名男生在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線)的離心率為,虛軸長為4.

1)求雙曲線的標(biāo)準(zhǔn)方程;

2)直線與雙曲線相交于,兩點(diǎn),為坐標(biāo)原點(diǎn),的面積是,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案