6.cos(-420°)cos300°=-$\frac{1}{4}$.

分析 利用誘導公式化簡所給的式子,再利用特殊角的三角函數(shù)的值計算求得結(jié)果.

解答 解:cos(-420°)cos300°=cos(-120°)cos(-60°)=cos120°cos60°=-$\frac{1}{2}$•$\frac{1}{2}$=-$\frac{1}{4}$,
故答案為:-$\frac{1}{4}$.

點評 本題主要考查誘導公式的應(yīng)用,特殊角的三角函數(shù)的值,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{3x-2y+4≥0}\\{x+y-4≤0}\\{x-ay-2≤0}\end{array}}\right.$,已知z=2x+y的最大值是7,最小值是-26,則實數(shù)a的值為( 。
A.6B.-6C.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c且3b=2$\sqrt{3}$c.
(1)若B=2C,求sinB的值;
(2)若c=3,△ABC的面積為3$\sqrt{2}$,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.角α終邊上有一點(-1,2),則下列各點中在角3α的終邊上的點是( 。
A.(-11,2)B.(-2,11)C.(11,-2)D.(2,-11)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,m),若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$•$\overrightarrow$等于( 。
A.1B.2C.5D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.$\underset{lim}{x→1}$$\frac{{x}^{n-1}}{x-1}$=(  )
A.0B.1C.nD.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知中心在原點O,焦點在x軸上的橢圓,離心率$e=\frac{{\sqrt{3}}}{2}$,且橢圓過點$(\sqrt{2},\frac{{\sqrt{2}}}{2})$.
(Ⅰ) 求該橢圓的方程;
(Ⅱ)過點D(1,$\frac{1}{2}$)的直線(斜率存在)與該橢圓M交于P、Q兩點,且|DP|=|DQ|,求此直線的方程;
(Ⅲ)過點E(1,0)的直線(斜率存在)與該橢圓M交于P、Q兩點,且|EP|=2|EQ|,求此直線的方程;
(Ⅳ)設(shè)不過原點O的直線l與該橢圓交于P、Q兩點,滿足直線OP、PQ、OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.$sin2α=\frac{24}{25}$,$0<α<\frac{π}{2}$,則$\sqrt{2}cos(\frac{π}{4}-α)$的值為( 。
A.$-\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{7}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)y=$\sqrt{3}$sinx+3cosx+1(x∈[π,2π])的單調(diào)遞增區(qū)間是[$\frac{7π}{6}$.2π].

查看答案和解析>>

同步練習冊答案