【題目】如圖,在三棱柱中,,,,在底面的射影為的中點(diǎn),是的中點(diǎn).
(1)證明:平面;
(2)求二面角的平面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)設(shè)為的中點(diǎn),連接,依題意有,,故平面.根據(jù)分析有,故平面;(2)以的中點(diǎn)為原點(diǎn),分別以射線為軸的正半軸,建立空間直角坐標(biāo)系,利用向量法求得余弦值為.
試題解析:
(1)設(shè)為的中點(diǎn),連接.由題意得:平面,所以.
因?yàn)?/span>,所以,,故平面.
由分別為的中點(diǎn),得且,
從而且,所以為平行四邊形,故,
又因?yàn)?/span>平面,所以平面.
(2)方法一:作,且,連結(jié).
由,,得,
由,,得與全等.
由,得,因此為二面角的平面角.
由,,,得,,
由余弦定理得.
方法二:
以的中點(diǎn)為原點(diǎn),分別以射線為軸的正半軸,建立空間直角坐標(biāo)系,如圖所示,
由題意知各點(diǎn)坐標(biāo)如下:
,
因此,,,
設(shè)平面的法向量為,平面的法向量為,
由,即,可取.
由,即,可取,
于是.
由題意可知,所求二面角的平面角是鈍角,故二面角的平面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sin( x+φ),1), =(1,cos( x+φ))(ω>0,0<φ< ),記函數(shù)f(x)=( + )( ﹣ ).若函數(shù)y=f(x)的周期為4,且經(jīng)過點(diǎn)M(1, ).
(1)求ω的值;
(2)當(dāng)﹣1≤x≤1時(shí),求函數(shù)f(x)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi),定點(diǎn)A,B,C,D滿足 , = = =﹣2,動(dòng)點(diǎn)P,M滿足 =1, = ,則| |2的最大值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0; ②f(0)f(1)<0;
③f(0)f(3)>0; ④f(0)f(3)<0.
其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形OABP是平行四邊形,過點(diǎn)P的直線與射線OA,OB分別相交于點(diǎn)M,N,若 , .
(1)把y用x表示出來(即求y=f(x)的解析式);
(2)設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足Sn=f(Sn﹣1)(n≥2且n∈N*),求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為萬元,產(chǎn)品價(jià)格隨著產(chǎn)量變化而有所變化,經(jīng)過一段時(shí)間的產(chǎn)銷,得到了的一組統(tǒng)計(jì)數(shù)據(jù)如下表:
(1)請(qǐng)判斷與中,哪個(gè)模型更適合刻畫之間的關(guān)系?可從函數(shù)增長趨勢(shì)方面給出簡(jiǎn)單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并估計(jì)當(dāng)日產(chǎn)量時(shí),日銷售額是多少?(結(jié)果保留整數(shù))
參考公式及數(shù)據(jù):線性回歸方程中,,.
,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列前n項(xiàng),前2n項(xiàng),前3n項(xiàng)的和分別為Sn,S2n,S3n,求證:=Sn(S2n+S3n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 和 .假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊.問:乙恰好射擊5次后,被中止射擊的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com