A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 由題意,f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)是奇函數(shù),可得f(0)=0,求出φ=$\frac{π}{2}$.
點(diǎn)M的坐標(biāo)為(1,0)且△MNE為等腰直角三角形,可得∠EMN=45°,MN=$\frac{2π}{ω}×\frac{1}{2}$.可得E是坐標(biāo).
解答 解:由題意,f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)是奇函數(shù),可得f(0)=0,
即cosφ=0,
∴φ=$\frac{π}{2}$.
那么f(x)=-Asinωx.
點(diǎn)M的坐標(biāo)為(1,0),圖象過M點(diǎn),
可得-Asinω=0
即ω=kπ,k∈Z
∵△MNE為等腰直角三角形,可得∠EMN=45°,MN=$\frac{2π}{ω}×\frac{1}{2}$.
過E作MN垂線交MN于F,則MF=$\frac{π}{2ω}$,
∴F(1$+\frac{π}{2ω}$,0)
可得E的坐標(biāo)為(1$+\frac{π}{2ω}$,$\frac{π}{2ω}$)
∴A=$\frac{π}{2ω}$.
∵ω>0,
∴ω最小值為π.
∴A的最大值為$\frac{1}{2}$.
故選B.
點(diǎn)評 本題中的重要性質(zhì)要注意靈活運(yùn)用:若奇函數(shù)的定義域包括0,則f(0)=0;解決本題的另一關(guān)鍵是圖象過M點(diǎn),確定ω的值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤-2或x≥2} | B. | {x|x<-2或x>2} | C. | {x|-2<x<2} | D. | {x|-2≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x>2y | B. | lgx>lgy | C. | $\frac{1}{x}>\frac{1}{y}$ | D. | x2>y2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>3? | B. | a≥3? | C. | a≤3? | D. | a<3? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com