13.已知奇函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,點(diǎn)M的坐標(biāo)為(1,0)且△MNE為等腰直角三角形,當(dāng)A的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 由題意,f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)是奇函數(shù),可得f(0)=0,求出φ=$\frac{π}{2}$.
點(diǎn)M的坐標(biāo)為(1,0)且△MNE為等腰直角三角形,可得∠EMN=45°,MN=$\frac{2π}{ω}×\frac{1}{2}$.可得E是坐標(biāo).

解答 解:由題意,f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)是奇函數(shù),可得f(0)=0,
即cosφ=0,
∴φ=$\frac{π}{2}$.
那么f(x)=-Asinωx.
點(diǎn)M的坐標(biāo)為(1,0),圖象過M點(diǎn),
可得-Asinω=0
即ω=kπ,k∈Z
∵△MNE為等腰直角三角形,可得∠EMN=45°,MN=$\frac{2π}{ω}×\frac{1}{2}$.
過E作MN垂線交MN于F,則MF=$\frac{π}{2ω}$,
∴F(1$+\frac{π}{2ω}$,0)
可得E的坐標(biāo)為(1$+\frac{π}{2ω}$,$\frac{π}{2ω}$)
∴A=$\frac{π}{2ω}$.
∵ω>0,
∴ω最小值為π.
∴A的最大值為$\frac{1}{2}$.
故選B.

點(diǎn)評 本題中的重要性質(zhì)要注意靈活運(yùn)用:若奇函數(shù)的定義域包括0,則f(0)=0;解決本題的另一關(guān)鍵是圖象過M點(diǎn),確定ω的值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,已知三內(nèi)角A,B,C成等差數(shù)列,且sin($\frac{π}{2}$+A)=$\frac{11}{14}$.
(Ⅰ)求tanA及角B的值;
(Ⅱ)設(shè)角A,B,C所對的邊分別為a,b,c,且a=5,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x2-4<0},則∁RA=( 。
A.{x|x≤-2或x≥2}B.{x|x<-2或x>2}C.{x|-2<x<2}D.{x|-2≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x,y∈R,那么“x>y”的充分必要條件是( 。
A.2x>2yB.lgx>lgyC.$\frac{1}{x}>\frac{1}{y}$D.x2>y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)$f(x)=Asin(ωx+\frac{π}{6})(A>0,ω>0)$的最大值為2,它的最小正周期為2π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)=cosx•f(x),求g(x)在區(qū)間$[-\frac{π}{6},\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an+1}是一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列,已知a3=7,a7=127.
(1)求的a1值;
(2)求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知流程圖如圖所示,該程序運(yùn)行后,為使輸出的f(x)值為16,則循環(huán)體的判斷框內(nèi)①處應(yīng)( 。
A.a>3?B.a≥3?C.a≤3?D.a<3?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某集團(tuán)公司今年產(chǎn)值20億元,如果平均年增長8%,問多少年后能達(dá)到40億元?(1g1.08≈0.0334,1g2≈0.301).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=7,S4=24,數(shù)列{bn}的前n項(xiàng)和Tn=n2+an
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{b_n}{2^n}}\right\}$的前n項(xiàng)和Bn

查看答案和解析>>

同步練習(xí)冊答案