一個箱子中裝有4個白球和3個黑球,一次摸出2個球,則在已知它們的顏色相同的情況下,該顏色是白色的概率為    (用數(shù)字作答)
【答案】分析:根據(jù)題意,首先計(jì)算取出兩個球都是白球的情況數(shù)目,再計(jì)算取出兩球都是黑球的情況數(shù)目,兩者相加可得取出兩球顏色相同的情況數(shù)目,進(jìn)而由等可能事件的概率公式,計(jì)算可得答案.
解答:解:4個白球中取2個白球有C42=6種,
3個黑球中取2個黑球有C32=3種,
則一次摸出2個球,它們的顏色相同的有6+3=9種;
故一次摸出2個球,在已知它們的顏色相同的情況下,該顏色是白色的概率為=
故答案為:
點(diǎn)評:本題主要考查了等可能事件的概率,關(guān)鍵是對條件“在已知它們的顏色相同的情況下”的理解,也可以由條件概率來求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個箱子中裝有4個白球和3個黑球,一次摸出2個球,則在已知它們的顏色相同的情況下,該顏色是白色的概率為
2
3
2
3
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

一個箱子中裝有6個白球和4個黑球,一次摸出2個球,在已知它們的顏色相同的情況下,其顏色是白色的概率是(   )

    A、            B、      C、                  D、

 

查看答案和解析>>

同步練習(xí)冊答案