分析 (1)設(shè)x>0,則-x<0,根據(jù)條件以及函數(shù)的奇偶性求得f(x)的解析式,可得結(jié)論.
(2)由題意可得 f(x)在在(-∞,0)上單調(diào)遞減,且f(-1)=1,由不等式f(2x-1)>1,可得 2x-1>1,或2x-1<-1,由此求得x的范圍.
解答 解:(1)設(shè)x>0,則-x<0,
∵當(dāng)x≤0時(shí),f(x)=log2(-x+1),
∴f(-x)=log2(x+1),
∵f(x)是定義在R上的偶函數(shù),
∴f(-x)=log2(x+1)=f(x),
即f(x)=log2(x+1).
綜上可得,f(x)=$\left\{\begin{array}{l}{{log}_{2}(x+1),x>0}\\{{log}_{2}(-x+1),x≤0}\end{array}\right.$;
(2)∵f(x)是定義在R上的偶函數(shù),在(0,+∞)上單調(diào)遞增,且f(1)=1,
∴f(x)在在(-∞,0)上單調(diào)遞減,且f(-1)=1,
∵關(guān)于x的不等式f(2x-1)>1,∴2x-1>1,或2x-1<-1,求得x>1,或 x<0,
故原不等式的解集為{x|x>1,或x<0}.
點(diǎn)評(píng) 本題主要考查利用函數(shù)的奇偶性求函數(shù)的解析式,以及解不等式,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 數(shù)量可以比較大小,向量也可以比較大小 | |
B. | 方向不同的向量不能比較大小,但同向的可以比較大小 | |
C. | 向量的大小與方向有關(guān) | |
D. | 向量的?梢员容^大小 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3<m≤-1或7≤m<9 | B. | -3≤m≤-1或7≤m≤9 | C. | -3<m<-1或7<m<9 | D. | -3<m<-1或7≤m<9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com