15.{an}是公差不為0的等差數(shù)列,{bn}是公比為正數(shù)的等比數(shù)列,a1=b1=1,a4=b3,a8=b4,則數(shù)列{anbn}的前n項(xiàng)和等于(n-1)2n+1.

分析 通過設(shè){an}的公差為d(d≠0),{bn}的公比為q(q>0),利用已知條件聯(lián)立方程組可求出d和q,進(jìn)而利用錯位相減法計(jì)算即得結(jié)論.

解答 解:設(shè){an}的公差為d(d≠0),{bn}的公比為q(q>0),
則由a1=b1=1可知:an=1+(n-1)d,bn=qn-1,
又∵a4=b3,a8=b4
∴1+3d=q2,1+7d=q3
∴(1+3d)3=(1+7d)2,整理得27d2-22d-5=0,
解得:d=1或d=-$\frac{5}{27}$(舍),q=2,
∴an=n,bn=2n-1
記cn=anbn=n•2n-1,數(shù)列{cn}的前n項(xiàng)和為Sn
則Sn=1•20+2•21+3•22+…+n•2n-1,
2Sn=1•21+2•22+…+(n-1)•2n-1+n•2n
兩式相減,得:-Sn=20+21+22+…+2n-1-n•2n=$\frac{1-{2}^{n}}{1-2}$-n•2n=-(n-1)2n-1,
所以Sn=(n-1)2n+1,
故答案為:(n-1)2n+1.

點(diǎn)評 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查錯位相減法,考查運(yùn)算求解能力,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC中,角A、B、C的對邊分別為a、b、c,G是平面△ABC上一點(diǎn),且滿足a•$\overrightarrow{GA}$+b•$\overrightarrow{GB}$+c•$\overrightarrow{GC}$=0,則G是△ABC中的( 。
A.內(nèi)心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為M,若M的取值范圍是[1,2],則點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積為(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線方程為2x+y=0,則C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i為虛數(shù)單位,z(1-i)=1+i,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.-iB.iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F(xiàn)分別是AB,AC上的點(diǎn),且$\overrightarrow{AE}=λ\overrightarrow{AB},\overrightarrow{AF}=μ\overrightarrow{AC}$,(其中λ,μ∈(0,1)),且λ+4μ=1,若線段EF,BC的中點(diǎn)分別為M,N,則$\overrightarrow{MN}$的最小值為$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知在△ABC中,角A、B、C的對邊分別為a,b,c,且cosC=-$\frac{1}{4}$,c=4,$\frac{sinA}{sinB}$=$\frac{2}{3}$
(I)求a,b的值以及△ABC的面積;
(Ⅱ)記AD為A的角平分線且交BC 于D,求AD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,若C=2A,c=$\sqrt{3}$a,則$\frac{a}$等于( 。
A.1B.2C.$\sqrt{2}$D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+bx+c,x≤0\\ lnx,x>0\end{array}\right.$,若f(-4)=f(0),f(-2)=-2,則關(guān)于x的方程f(x)=x的根的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案