方程mx+ny2=0與mx2+ny2=1(mn≠0)在同一坐標(biāo)系中的大致圖象可能是( 。
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,圓錐曲線的定義、性質(zhì)與方程
分析:分別根據(jù)圓錐曲線的定義,逐一判斷和每個(gè)選項(xiàng),即可得到答案
解答: 解:A方程mx+ny2=0可化為y2=-
m
n
x
,這表示焦點(diǎn)在x軸的拋物線,排除D;
當(dāng)開(kāi)口向右時(shí),-
m
n
>0
,則mm<0,所以mx2+ny2=1(mn≠0)表示雙曲線,排除C;
當(dāng)開(kāi)口向左時(shí),-
m
n
<0
,則mm>0,所以mx2+ny2=1(mn≠0)表示橢圓或圓或不表示任何圖形,排除B;
故選:A
點(diǎn)評(píng):本題考查了圓錐曲線的方程,利用排除法時(shí)選擇題常用的方法,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的圖象如圖所示,則最大、最小值分別為(  )
A、f(
3
2
),f(-
3
2
B、f(0),f(
3
2
C、f(0),f(-
3
2
D、f(0),f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中滿(mǎn)足a1=15,an+1=an+2n,則
an
n
的最小值為( 。
A、9
B、7
C、
27
4
D、2
15
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿(mǎn)足:a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}前n項(xiàng)的和為Sn,若數(shù)列{bn}滿(mǎn)足bn=anlog2(Sn+2),試求數(shù)列{bn}前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+3x(x≥0),對(duì)于曲線y=f(x)上橫坐標(biāo)成公差為1的等差數(shù)列的三個(gè)點(diǎn)A,B,C,給出以下判斷:①△ABC一定是鈍角三角形;
②△ABC可能是直角三角形;
③△ABC可能為銳角三角形;
④△ABC不可能是等腰三角形,其中所有正確的序號(hào)是( 。
A、①②B、①③C、②③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體是由直三棱柱與圓錐的組合體,起直觀圖和三視圖
如圖所示,正視圖為正方形,其中俯視圖中橢圓的離心率為( 。
A、
2
B、
1
2
C、
2
4
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[
1
2
,
5
2
]時(shí),求函數(shù)y=f(x-1)+f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1有公共點(diǎn),則此雙曲線的離心率的取值范圍是( 。
A、(1,
2
3
3
B、(1,
2
3
3
]
C、(
2
3
3
,+∞)
D、[
2
3
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足約束條件x≥0,y≥0,2x+y≤4,則
y+4
x+2
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案