已知正方形的邊長為1,若點邊上的動點,則的最大值為        .

 

【答案】

1

【解析】

試題分析:設,,所以的最大值為1.

考點:平面向量的線性運算和數(shù)量積.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正方形的邊長為1,在正方形ABCD中有兩個相切的內切圓.
(1)求這兩個內切圓的半徑之和;
(2)當這兩個圓的半徑為何值時,兩圓面積之和有最小值?當這兩個圓的半徑為何值時,兩圓面積之和有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)第8題的題干為:如圖,已知正方形的邊長為1,在正方形ABCD中有兩個相切的內切圓.
(1)求這兩個內切圓的半徑之和;
(2)當這兩個圓的半徑為何值時,兩圓面積之和有最小值?當這兩個圓的半徑為何值時,兩圓面積之和有最大值?
變式(1)在第8題中,若正方形改為矩形,情況又如何?
(2)在第8題中,若正方形改為正方體,圓改為球,情況如何?

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇省高三開學檢測文科數(shù)學試卷(解析版) 題型:填空題

已知正方形的邊長為1,若點邊上的動點,則的最大值為        .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省高三調研理科數(shù)學試卷(3) 題型:解答題

如圖,已知正方形的邊長為1,平面平面,邊上的動點。

(1)證明:平面;                    

(2)試探究點的位置,使平面平面。

 

 

 

查看答案和解析>>

同步練習冊答案