證明:
sinα+1
1+sinα+cosα
=
1
2
tan
α
2
+
1
2
考點(diǎn):三角函數(shù)恒等式的證明
專(zhuān)題:證明題,三角函數(shù)的求值
分析:用萬(wàn)能公式化簡(jiǎn)后證明左邊等于右邊即可.
解答: 證明:∵左邊=
sinα+1
1+sinα+cosα
=
2tan2
α
2
1+tan2
α
2
+1
1+
2tan2
α
2
1+tan2
α
2
+
1-tan2
α
2
1+tan2
α
2
=
(tan
α
2
+1)
2
2(tan
α
2
+1)
=
1
2
tan
α
2
+
1
2
=右邊.
∴得證.
點(diǎn)評(píng):本題主要考察了三角函數(shù)恒等式的證明,萬(wàn)能公式的應(yīng)用,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,錯(cuò)誤的是( 。
A、一條直線(xiàn)與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)面相交
B、平行于同一平面的兩條直線(xiàn)不一定平行
C、如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線(xiàn)垂直于平面
D、若直線(xiàn)l不平行于平面α內(nèi)不存在與l平行的直線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

球的體積是
32
3
π,則此球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

新余到吉安相距120千米,汽車(chē)從新余勻速行駛到吉安,速度不超過(guò)120km/h,已知汽車(chē)每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度v(km/h)的平方成正比,比例系數(shù)為b,固定部分為a元,
(1)把全程運(yùn)輸成本y(元)表示為速度v(km/h)的函數(shù);并求出當(dāng)a=50,b=
1
200
時(shí),汽車(chē)應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最;
(2)隨著汽車(chē)的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng)a=
169
2
,b=
1
200
,此時(shí)汽車(chē)的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-
π
2
<α<β<π,則
α-β
2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求點(diǎn)P(0,4)到圓C:x2+y2=4的切線(xiàn)長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷直線(xiàn)l:(1+m)x+(1-m)y+2m-1=0與⊙O:x2+y2=9的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求兩條平行直線(xiàn)3x-2y-1=0與3x-2y+1=0間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿(mǎn)足不等式組
y≥0
x-y≥0
2x-y-2≤0
,則目標(biāo)函數(shù)z=2x+y的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案