【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線 的參數(shù)方程為 ( 為參數(shù)),點 是曲線 上的一動點,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線 的方程為 .
(Ⅰ)求線段 的中點 的軌跡的極坐標方程;
(Ⅱ)求曲線 上的點到直線 的距離的最大值.
【答案】解:(Ⅰ)設線段 的中點 的坐標為 ,
由中點坐標公式得 ( 為參數(shù)),
消去參數(shù)得 的軌跡的直角坐標方程為 ,
由互化公式可得
故答案為:點 的軌跡的極坐標方程為 .
(Ⅱ)由直線 的極坐標方程為 ,得 ,
所以直線 的直角坐標方程為 ,
曲線 的普通方程為 ,它表示以 為圓心,2為半徑的圓,
則圓心到直線 的距離為 ,所以直線 與圓相離,
故答案為:曲線 上的點到直線 的距離的最大值為
【解析】(1)設OP的中點M的坐標為(x,y),用中點坐標公式將點M的坐標表示為為參數(shù)的參數(shù)方程,先普通方程,再化為極坐標方程.
(2)將直線l的極坐標方程用公式化為普通方程,當直線與圓相離時,圓上的點到直線的點的距離最大值就是圓心到直線的距離加上半徑.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=2x2-ln x在其定義域內(nèi)的一個子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實數(shù)k的取值范圍是( )
A.[1,+∞)
B.[1,2)
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .(Ⅰ)求函數(shù) 的單調(diào)遞增區(qū)間;
(Ⅱ)函數(shù) 在 上的最大值與最小值的差為 ,求 的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線 的焦點為 ,準線為 ,點 在拋物線 上,已知以點 為圓心, 為半徑的圓 交 于 兩點.
(Ⅰ)若 , 的面積為4,求拋物線 的方程;
(Ⅱ)若 三點在同一條直線 上,直線 與 平行,且 與拋物線 只有一個公共點,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓 : ( )的焦距與橢圓 : 的短軸長相等,且 與 的長軸長相等,這兩個橢圓在第一象限的交點為 ,直線 經(jīng)過 在 軸正半軸上的頂點 且與直線 ( 為坐標原點)垂直, 與 的另一個交點為 , 與 交于 , 兩點.
(1)求 的標準方程;
(2)求 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點 ,焦點在 軸上,離心率為 的橢圓過點 .
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓與 軸的非負半軸交于點 ,過點 作互相垂直的兩條直線,分別交橢圓于點 , 兩點,連接 ,求 的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com