【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)現(xiàn)有設備下每日生產(chǎn)總成本(單位:萬元)與日產(chǎn)量(單位:噸)之間的函數(shù)關系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進了除塵設備,每噸產(chǎn)品除塵費用為萬元,除塵后當日產(chǎn)量時,總成本.

1)求的值;

2)若每噸產(chǎn)品出廠價為59萬元,試求除塵后日產(chǎn)量為多少時,每噸產(chǎn)品的利潤最大,最大利潤為多少?

【答案】(1)2,(2) 除塵后日產(chǎn)量為11噸時,每噸產(chǎn)品的利潤最大,最大利潤為6萬元.

【解析】

1)利用原來的成本加上衛(wèi)生綜合整治后增加的成本,求得除塵后總成本的表達式,利用,求得的值.

2)由(1)求得除塵后總成本的表達式,進而求得總利潤的表達式,由此求得每噸產(chǎn)品利潤的表達式,利用基本不等式求得每噸產(chǎn)品的利潤的最大值,以及此時對應的日產(chǎn)量.

1)由題意,除塵后

當日產(chǎn)量時,總成本

,

解得.

2)由(1,

總利潤,

每噸產(chǎn)品的利潤,

當且僅當,即時取等號,

除塵后日產(chǎn)量為11噸時,每噸產(chǎn)品的利潤最大,最大利潤為6萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在其圖象上存在不同的兩點,其坐標滿足條件:的最大值為0,則稱為“柯西函數(shù)”,

則下列函數(shù):

;

;

其中為“柯西函數(shù)”的個數(shù)為  

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C過點M(2,0),且右焦點為F(1,0),過F的直線l與橢圓C相交于AB兩點.設點P(4,3),記PA、PB的斜率分別為k1k2

(1)求橢圓C的方程;

(2)如果直線l的斜率等于-1,求出k1k2的值;

(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

在如圖所示的多面體中,平面,,,,的中點.

(1)求證:;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程(本題滿分10分)

在平面直角坐標系中,將曲線向左平移2個單位,再將得到的曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,的極坐標方程為

(1)求曲線的參數(shù)方程;

(2)已知點在第一象限,四邊形是曲線的內(nèi)接矩形,求內(nèi)接矩形周長的最大值,并求周長最大時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)對一切, 恒成立,求實數(shù)的取值范圍;

(3)證明:對一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左.右焦點分別為,短軸兩個端點為,且四邊形的邊長為 的正方形.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,分別是橢圓長軸的左,右端點,動點滿足,連結(jié),交橢圓于點.證明: 的定值;

(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點,的定點,使得以為直徑的圓恒過直線,的交點,若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某老師是省級課題組的成員,主要研究課堂教學目標達成度,為方便研究,從實驗班中隨機抽取30次的隨堂測試成績進行數(shù)據(jù)分析已知學生甲的30次隨堂測試成績?nèi)缦?/span>滿分為100分

88 58 50 36 75 39 57 62 72 51

85 39 57 53 72 46 64 74 53 50

44 83 70 63 71 64 54 62 61 42

把學生甲的成績按,,,分成6組,列出頻率分布表,并畫出頻率分布直方圖;

為更好的分析學生甲存在的問題,從隨堂測試成績50分以下不包括50分的試卷中隨機抽取3份進行分析,求恰有2份成績在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為雙曲線: 的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線C于點,且

1)求雙曲線C的方程;

2)若直線與雙曲線C恒有兩個不同交點PQ (其中O為原點),求k的取值范圍;

3)過雙曲線C上任意一點R作該雙曲線兩條漸近線的垂線,垂足分別為M,N,求的值.

查看答案和解析>>

同步練習冊答案