【題目】若函數(shù)在其圖象上存在不同的兩點,,其坐標(biāo)滿足條件:的最大值為0,則稱為“柯西函數(shù)”,

則下列函數(shù):

;

;

;

其中為“柯西函數(shù)”的個數(shù)為  

A. 1B. 2C. 3D. 4

【答案】B

【解析】

問題轉(zhuǎn)化為存在過原點的直線的圖象有兩個不同的交點,利用方程思想與數(shù)形結(jié)合思想,逐一判斷即可.

由柯西不等式得:對任意實數(shù)恒成立(當(dāng)且僅當(dāng)取等號),若函數(shù)在其圖象上存在不同的兩點,其坐標(biāo)滿足條件:的最大值為0,則函數(shù)在其圖象上存在不同的兩點,使得共線,即存在過原點的直線的圖象有兩個不同的交點:

對于① ,方程,,不可能有兩個正根,故不存在;

對于②,,由圖可知不存在;

對于③,由圖可知存在;

對于④,由圖可知存在,

所以“柯西函數(shù)”的個數(shù)為2,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為y=(-a-1)x +a-2.

1)求直線過定點A的坐標(biāo);

2)若l在兩坐標(biāo)軸上的截距相等,求l的方程;

3)若l不經(jīng)過第二象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ab、c的三邊長,直線的方程為,圓

1)若為直角三角形,c為斜邊長,且直線與圓M相切.求c的值;

2)已知為坐標(biāo)原點,點,,,平行于ON的直線h與圓M相交于R,兩點,且,求直線h的方程:

3)若為正三角形,對于直線上任意一點P,在圓上總存在一點,使得線段的長度為整數(shù),求c的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù)使得,則實數(shù)的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果有窮數(shù)列、、、為正整數(shù))滿足條件、、,即,我們稱其為“對稱數(shù)列”.例如,數(shù)列、、、與數(shù)列、、、、都是“對稱數(shù)列”.

1)設(shè)項的“對稱數(shù)列”,其中、、是等差數(shù)列,且,,依次寫出的每一項;

2)設(shè)項的“對稱數(shù)列”,其中、、、是首項為,公比為的等比數(shù)列,求各項的和;

3)設(shè)項的“對稱數(shù)列”,其中、、、是首項為,公差為的等差數(shù)列,求項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐的底面為直角梯形,,,為正三角形.

(1)點為棱上一點,若平面,,求實數(shù)的值;

(2)求點B到平面SAD的距離.

【答案】(1);(2)

【解析】試題分析:(1)由平面,可證,進而證得四邊形為平行四邊形,根據(jù),可得;

(2)利用等體積法可求點到平面的距離.

試題解析:((1)因為平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以,

因為,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點.

因為

.

(2)因為 , ,

所以平面,

又因為平面,

所以平面平面,

平面平面,

在平面內(nèi)過點直線于點,則平面,

中,

因為,所以,

又由題知,

所以

由已知求得,所以,

連接BD,則

又求得的面積為,

所以由點B 到平面的距離為.

型】解答
結(jié)束】
19

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.

(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在 時,日平均派送量為單.

若將頻率視為概率,回答下列問題:

①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列,數(shù)學(xué)期望及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.

(參考數(shù)據(jù): , , , , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若,且是函數(shù)的一個極值,求函數(shù)的最小值;

(Ⅱ)若,求證:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪70元,每單抽成2元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成4元,超出40單的部分每單抽成6元.假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如下頻數(shù)表:

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

20

40

20

10

10

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

20

20

40

10

(1)現(xiàn)從甲公司記錄的這100天中隨機抽取兩天,求這兩天送餐單數(shù)都大于40的概率;

(2)若將頻率視為概率,回答以下問題:

(i)記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進了除塵設(shè)備,每噸產(chǎn)品除塵費用為萬元,除塵后當(dāng)日產(chǎn)量時,總成本.

1)求的值;

2)若每噸產(chǎn)品出廠價為59萬元,試求除塵后日產(chǎn)量為多少時,每噸產(chǎn)品的利潤最大,最大利潤為多少?

查看答案和解析>>

同步練習(xí)冊答案