分析 (1)先求出函數(shù)的導數(shù),根據(jù)f′(1)=-e,求出a的值即可;
(2)問題轉化為a≤lnx+$\frac{1}{x}$或a≥lnx+$\frac{1}{x}$,令g(x)=lnx+$\frac{1}{x}$,通過求導得到g(x)的單調(diào)性,求出g(x)的最小值,從而求出a的范圍
解答 解:(1)∵f′(x)=ex(lnx+$\frac{1}{x}$-a),(x>0),直線y=$\frac{1}{e}$x+1的斜率是:$\frac{1}{e}$,
∴f′(1)=e(1-a)=-e,解得:a=2;
(2)若函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)函數(shù),
則ex(lnx+$\frac{1}{x}$-a)≥0或ex(lnx+$\frac{1}{x}$-a)≤0,
即a≤lnx+$\frac{1}{x}$或a≥lnx+$\frac{1}{x}$,
令g(x)=lnx+$\frac{1}{x}$,則g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
∴g(x)在(0,1)遞減,在(1,+∞)遞增,
∴g(x)最小值=g(1)=1,無最大值;
故a≤1,函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用,曲線的切線方程問題,是一道中檔題.
科目:高中數(shù)學 來源:2016-2017學年江西吉安一中高二上段考一數(shù)學(理)試卷(解析版) 題型:填空題
如果對任何實數(shù),直線都過一個定點,那么點的坐標是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com