15.函數(shù)f(x)=$\left\{\begin{array}{l}{lnx\\;(x>0)}\\{(\frac{1}{2})^{x}\\;(x≤0)}\end{array}\right.$,則函數(shù)y=2[f(x)]2-3f(x)+1的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 根據(jù)函數(shù)和方程之間的關(guān)系由2[f(x)]2-3f(x)+1=0得f(x)=1或f(x)=$\frac{1}{2}$,然后利用分段函數(shù)進(jìn)行求解即可.

解答 解:由y=2[f(x)]2-3f(x)+1=0得
[f(x)-1][2f(x)-1]=0,
即f(x)=1或f(x)=$\frac{1}{2}$,
函數(shù)f(x)=$\left\{\begin{array}{l}{lnx\\;(x>0)}\\{(\frac{1}{2})^{x}\\;(x≤0)}\end{array}\right.$,
當(dāng)f(x)=1時(shí),方程有2個(gè)根,x=e,x=0;
當(dāng)f(x)=$\frac{1}{2}$時(shí),方程有2個(gè)根,x=1舍去,x=${e}^{\frac{1}{2}}$,
綜上函數(shù)有3個(gè)不同的零點(diǎn),
故選:C.

點(diǎn)評(píng) 本小題主要考查函數(shù)的零點(diǎn)、方程的解法等基礎(chǔ)知識(shí),利用分段函數(shù)求解方程的根是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acosC+$\sqrt{3}$asinC-b-c=0,則當(dāng)a=2,△ABC的面積為$\sqrt{3}$時(shí),△ABC的周長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=cos(2x-\frac{π}{3})-2\sqrt{3}$sinxcosx.
(1)求f(x)的最小值正周期、最大值及取得最大值時(shí)x的值;
(2)討論f(x)在區(qū)間[0,π]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某幾何體的三視圖如圖所示,其中俯視圖是半圓里面內(nèi)切一個(gè)小圓,若該幾何體的表面積為16+16π,則正視圖中的a值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖程序框圖是為了求出滿足3n-2n>1000的最小偶數(shù)n,那么在兩個(gè)空白框中,可以分別填入( 。
A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.有一塔形幾何體由若干個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為2,且該塔形的表面積(含最底層正方體的底面面積)超過(guò)38,則該塔形中正方體的個(gè)數(shù)至少是( 。
A.4個(gè)B.5個(gè)C.6個(gè)D.7個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在區(qū)間($\frac{1}{2}$,3)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知一個(gè)五次多項(xiàng)式為f(x)=5x5-4x4-3x3+2x2+x+1,利用秦九韶算法計(jì)算f(2)的值時(shí),可把多項(xiàng)式改寫成
f(x)=((((5x-4)x-3)x+2)x+l)x+l,按照從內(nèi)到外的順序,依次計(jì)算:v0=5,v1=5×2-4=6,v2=6×2-3=9,v3=9×2+2=20,則v4的值為(  )
A.40B.41C.82D.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知bsinA=2csinB,b=2$\sqrt{6}$,cosA=$\frac{\sqrt{6}}{4}$.
(Ⅰ)求c;
(Ⅱ)求cos(2A+$\frac{π}{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案