18.設(shè)集合A={0,a},集合B={a2,-a3,a2-1}且A⊆B,則a的值是1.

分析 由A={0,a}及集合元素的互異性可知a≠0,所以a2≠0,-a3≠0,又A⊆B,所以a2-1=0,解得a=±1,再進(jìn)行驗(yàn)證,即可得出結(jié)論.

解答 解:由A={0,a}及集合元素的互異性可知a≠0,
所以a2≠0,-a3≠0,又A⊆B,
所以a2-1=0,解得a=±1.
當(dāng)a=-1時(shí),a2=-a3=1,這與集合元素互異性矛盾,舍去.
當(dāng)a=1時(shí),A={0,1},B={1,-1,0},滿足A⊆B.
綜上a=1,
故答案為:1.

點(diǎn)評(píng) 解出a=±1后,檢驗(yàn)這兩個(gè)值是否都滿足元素的互異性的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C:x2+y2-2x-8=0,直線l:x+ay-3a=0.
(1)當(dāng)直線l與圓C相切時(shí),求實(shí)數(shù)a的值;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=4$\sqrt{2}$時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列關(guān)于算法的說法中,正確的是(  )
A.算法是某個(gè)問題的解決過程B.算法執(zhí)行后可以不產(chǎn)生確定的結(jié)果
C.解決某類問題的算法不是唯一的D.算法可以無限的操作下去不停止

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)g(x)=$\sqrt{2{x^2}-3x+1}$,則函數(shù)g(x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,$\frac{1}{2}$]∪[2,+∞)B.[$\frac{1}{2}$,1]C.(-∞,$\frac{1}{2}$]∪[1,+∞)D.(-∞,-1]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC⊥AB且AA1=AC=AB,則直線AC1與直線A1B所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)定義如表,數(shù)列{xn}滿足x0=5,且對(duì)任意的自然數(shù)均有xn+1=f(xn),則x2015等于( 。
x12345
f(x)51342
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線2x-5y=1的極坐標(biāo)方程為2ρcosθ-5ρsinθ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義運(yùn)算(a,b)?(c,d)=ac-bd,則符合條件(z,1-2i)?(-1,1+i)=0的復(fù)數(shù)z的所對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x),不等式f(x)<0的解集為(0,5),且f(x)在區(qū)間[-1,3]上的最大值為12
(1)求f(x)得解析式    
(2)設(shè)函數(shù)f(x)在x∈[t,t+1]的最小值為g(t),求g(t)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案