【題目】甲、乙兩企業(yè)生產同一種型號零件,按規(guī)定該型號零件的質量指標值落在內為優(yōu)質品.從兩個企業(yè)生產的零件中各隨機抽出了件,測量這些零件的質量指標值,得結果如下表:
甲企業(yè):
分組 | |||||||
頻數 | 5 |
乙企業(yè):
分組 | |||||||
頻數 | 5 | 5 |
(1)已知甲企業(yè)的件零件質量指標值的樣本方差,該企業(yè)生產的零件質量指標值X服從正態(tài)分布,其中μ近似為質量指標值的樣本平均數(注:求時,同一組中的數據用該組區(qū)間的中點值作代表),近似為樣本方差,試根據企業(yè)的抽樣數據,估計所生產的零件中,質量指標值不低于的產品的概率.(精確到)
(2)由以上統(tǒng)計數據完成下面列聯表,并判斷能否在犯錯誤的概率不超過的前提下認為兩個企業(yè)生產的零件的質量有差異.
甲廠 | 乙廠 | 總計 | |
優(yōu)質品 | |||
非優(yōu)質品 | |||
總計 |
附:
參考數據:,
參考公式:若,則,
,;
【答案】(1);(2)列聯表見解析,能在犯錯誤的概率不超過的前提下認為兩個企業(yè)生產的產品的質量有差異.
【解析】
(1)計算甲企業(yè)的平均值,得出甲企業(yè)產品的質量指標值,計算所求的概率值;
(2)根據統(tǒng)計數據填寫列聯表,計算,對照臨界值表得出結論.
(1)依據上述數據,甲廠產品質量指標值的平均值為:
,
所以,,
即甲企業(yè)生產的零件質量指標值X服從正態(tài)分布,
又,則,
,
,
所以,甲企業(yè)零件質量指標值不低于的產品的概率為.
(2)列聯表:
甲廠 | 乙廠 | 總計 | |
優(yōu)質品 | |||
非優(yōu)質品 | |||
總計 |
計算
∴能在犯錯誤的概率不超過的前提下認為兩個企業(yè)生產的產品的質量有差異.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,底面ABC為正三角形,底面ABC,,點在線段上,平面平面.
(1)請指出點的位置,并給出證明;
(2)若,求與平面ABE夾角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線)的焦點F且斜率為的直線交拋物線C于M,N兩點,且.
(1)求p的值;
(2)拋物線C上一點,直線(其中)與拋物線C交于A,B兩個不同的點(A,B均與點Q不重合).設直線QA,QB的斜率分別為,.直線l是否過定點?如果是,請求出所有定點;如果不是,請說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地擬在一個U形水面PABQ(∠A=∠B=90°)上修一條堤壩(E在AP上,N在BQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點E,N拉2條分隔線ME,MN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設所拉分隔線總長度為l.
(1)設∠AME=2θ,求用θ表示的l函數表達式,并寫出定義域;
(2)求l的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com