【題目】如圖,在三棱柱中,底面ABC為正三角形,底面ABC,,點(diǎn)在線(xiàn)段上,平面平面.
(1)請(qǐng)指出點(diǎn)的位置,并給出證明;
(2)若,求與平面ABE夾角的正弦值.
【答案】(1)見(jiàn)解析;
(2).
【解析】
(1)取中點(diǎn)為,的中點(diǎn)為,連接,,.四邊形為平行四邊形,即可說(shuō)明平面,即平面,即平面平面.
(2)利用等體積法,即可求出點(diǎn)到平面ABE的距離的,再代入公式,即可求出答案。
(1)點(diǎn)為線(xiàn)段的中點(diǎn).
證明如下:取中點(diǎn)為,的中點(diǎn)為,連接,,.
所以,,所以四邊形為平行四邊形.所以.
因?yàn)?/span>,,所以.
又因?yàn)?/span>平面,平面,所以.
又,所以平面.
所以平面,而平面,所以平面平面.
(2)由,得.
由(1)可知,點(diǎn)到平面的距離為.
而的面積
,
等腰底邊AB上的高為
記點(diǎn)到平面ABE的距離為,
由,得,
即點(diǎn)到平面ABE的距離為.又
與平而ABE夾角的正弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象向右平移()個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若在區(qū)間上單調(diào)遞增,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二手車(chē)經(jīng)銷(xiāo)商小王對(duì)其所經(jīng)營(yíng)的型號(hào)二手汽車(chē)的使用年數(shù)與銷(xiāo)售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下數(shù)據(jù):
使用年數(shù) | ||||||
售價(jià) | ||||||
下面是關(guān)于的折線(xiàn)圖:
(1)由折線(xiàn)圖可以看出,可以用線(xiàn)性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(2)求關(guān)于的回歸方程并預(yù)測(cè)某輛型號(hào)二手車(chē)當(dāng)使用年數(shù)為年時(shí)售價(jià)約為多少?(、小數(shù)點(diǎn)后保留兩位有效數(shù)字)
(3)基于成本的考慮,該型號(hào)二手車(chē)的售價(jià)不得低于元,請(qǐng)根據(jù)(2)求出的回歸方程預(yù)測(cè)在收購(gòu)該型號(hào)二手車(chē)時(shí)車(chē)輛的使用年數(shù)不得超過(guò)多少年?
參考數(shù)據(jù):
,,,
,,
,,.
參考公式:回歸直線(xiàn)方程中斜率和截距的最小二乘估計(jì)公式分別為:
,.
,、為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:與圓M:的一個(gè)公共點(diǎn)為.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M的直線(xiàn)l與橢圓C交于A、B兩點(diǎn),且A是線(xiàn)段MB的中點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)名著,書(shū)中把三角形的田稱(chēng)為“圭田”,把直角梯形的田稱(chēng)為“邪田”,稱(chēng)底是“廣”,稱(chēng)高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機(jī)種植一株茶樹(shù),求該株茶樹(shù)恰好種在圭田內(nèi)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)在直線(xiàn)l:上.
(1)求曲線(xiàn)C和直線(xiàn)l的直角坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C的相交于點(diǎn)A、B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)綠色出行,某市在推出“共享單車(chē)”后,又推出“新能源分時(shí)租賃汽車(chē)”.其中一款新能源分時(shí)租賃汽車(chē),每次租車(chē)收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:①根據(jù)行駛里程數(shù)按1元/公里計(jì)費(fèi);②行駛時(shí)間不超過(guò)分時(shí),按元/分計(jì)費(fèi);超過(guò)分時(shí),超出部分按元/分計(jì)費(fèi).已知王先生家離上班地點(diǎn)15公里,每天租用該款汽車(chē)上、下班各一次.由于堵車(chē)、紅綠燈等因素,每次路上開(kāi)車(chē)花費(fèi)的時(shí)間(分)是一個(gè)隨機(jī)變量.現(xiàn)統(tǒng)計(jì)了50次路上開(kāi)車(chē)花費(fèi)時(shí)間,在各時(shí)間段內(nèi)的頻數(shù)分布情況如下表所示:
時(shí)間(分) | ||||
頻數(shù) | 2 | 18 | 20 | 10 |
將各時(shí)間段發(fā)生的頻率視為概率,每次路上開(kāi)車(chē)花費(fèi)的時(shí)間視為用車(chē)時(shí)間,范圍為分.
(1)寫(xiě)出王先生一次租車(chē)費(fèi)用(元)與用車(chē)時(shí)間(分)的函數(shù)關(guān)系式;
(2)若王先生一次開(kāi)車(chē)時(shí)間不超過(guò)40分為“路段暢通”,設(shè)表示3次租用新能源分時(shí)租賃汽車(chē)中“路段暢通”的次數(shù),求的分布列和期望;
(3)若公司每月給1000元的車(chē)補(bǔ),請(qǐng)估計(jì)王先生每月(按22天計(jì)算)的車(chē)補(bǔ)是否足夠上、下班租用新能源分時(shí)租賃汽車(chē)?并說(shuō)明理由.(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)與曲線(xiàn)交于兩點(diǎn).
(1)求直線(xiàn)l的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)已知點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com